Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Jelitha R, Nirmalatiban P, Nyanamalar S, Cabriz MG
    Med J Malaysia, 2015 Apr;70(2):67-75.
    PMID: 26162380
    Dengue vaccine development has been one of the strategies to reduce dengue incidence in the world alongside with other horizontal interventions such as vector control and the transgenic mosquito programmes. The objective of this paper is to evaluate the safety, reactogenicity and immunogenicity of dengue vaccine clinical trials for the last ten years systematically through a descriptive review. This paper discusses safety issues like adverse events, systemic adverse reactions, injection site reactions, viraemia, morbidity and mortality as well as immunogenicity which measures effectiveness through mean geometric titre and seropositive rates. Adverse events were seen to range from 0% to 28.3%. Immunogenicity was noted to increase post 1st and 2nd dose and decrease post 3rd dose. The seropositivity at baseline ranged between 53.1% and 97.8% at post 3rd dose, and it was 88.5% for at least four serotypes. The dengue vaccine studies that were reviewed were shown to be relatively safe with low reactogenicity, however the immunogenicity was unequal and waning. The immunogenicity waned post 3rd dose showing a decrease in all serotypes of varying degrees although the seropositivity, on average, at post 3rd dose was 97.8%. It can be concluded that dengue vaccine development would require further studies on its unequal and waning immunogenicity, which could result in a more severe form of dengue following wild infection, during re-immunisation, especially if there is variation in the circulating virus.
    Matched MeSH terms: Dengue Vaccines
  2. Pang T, Thiam DGY, Tantawichien T, Ismail Z, Yoksan S
    Lancet, 2015 May 02;385(9979):1725-1726.
    PMID: 25943934 DOI: 10.1016/S0140-6736(15)60888-1
    Matched MeSH terms: Dengue Vaccines/therapeutic use*
  3. Reginald K, Chan Y, Plebanski M, Poh CL
    Curr Pharm Des, 2018;24(11):1157-1173.
    PMID: 28914200 DOI: 10.2174/1381612823666170913163904
    Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
    Matched MeSH terms: Dengue Vaccines/immunology*
  4. Chew CH, Goh PP, Lim TO
    N Engl J Med, 2016 04 07;374(14):1388.
    PMID: 27050221 DOI: 10.1056/NEJMc1514451
    Matched MeSH terms: Dengue Vaccines/immunology*
  5. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH
    Virus Res, 2023 Jan 15;324:199018.
    PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018
    The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
    Matched MeSH terms: Dengue Vaccines*
  6. Pang EL, Loh HS
    Asian Pac J Trop Med, 2017 Mar;10(3):220-228.
    PMID: 28442105 DOI: 10.1016/j.apjtm.2017.03.003
    Dengue has been ranked as one of the top emerging diseases in Asia and Latin America. Current epidemiological data may not even reflect the true burden of disease due to under-reported figures. Vector control programmes have failed to contain the disease and worst of all, no specific treatment is available at the moment. Thereby, this pushes the demand for a dengue vaccine as a long-term protective approach. Despite there are numerous vaccine candidates ahead, they could be held back by different aspects in promoting vaccine implementation. Particularly for developing nations, logistics and cost are the major hurdles that need to be addressed in order to provide a quick yet affordable medical relief. As an alternative, plant-based vaccine production system is able to offer an attractive prospect given to its advantages of biocontainment warranty, low operation cost, rapid scalability and logistics flexibility. Researches that have embarked on this scope are laid out and reviewed in terms of the feasibility of plant system to serve as a biofactory for dengue vaccine.
    Matched MeSH terms: Dengue Vaccines
  7. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, et al.
    Lancet, 2014 Oct 11;384(9951):1358-65.
    PMID: 25018116 DOI: 10.1016/S0140-6736(14)61060-6
    An estimated 100 million people have symptomatic dengue infection every year. This is the first report of a phase 3 vaccine efficacy trial of a candidate dengue vaccine. We aimed to assess the efficacy of the CYD dengue vaccine against symptomatic, virologically confirmed dengue in children.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/adverse effects
  8. Lam SK
    Expert Rev Vaccines, 2013 Sep;12(9):995-1010.
    PMID: 24053394 DOI: 10.1586/14760584.2013.824712
    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/immunology*
  9. Zeng W, Halasa-Rappel YA, Baurin N, Coudeville L, Shepard DS
    Vaccine, 2018 01 08;36(3):413-420.
    PMID: 29229427 DOI: 10.1016/j.vaccine.2017.11.064
    Following publication of results from two phase-3 clinical trials in 10 countries or territories, endemic countries began licensing the first dengue vaccine in 2015. Using a published mathematical model, we evaluated the cost-effectiveness of dengue vaccination in populations similar to those at the trial sites in those same Latin American and Asian countries. Our main scenarios (30-year horizon, 80% coverage) entailed 3-dose routine vaccinations costing US$20/dose beginning at age 9, potentially supplemented by catch-up programs of 4- or 8-year cohorts. We obtained illness costs per case, dengue mortality, vaccine wastage, and vaccine administration costs from the literature. We estimated that routine vaccination would reduce yearly direct and indirect illness cost per capita by 22% (from US$10.51 to US$8.17) in the Latin American countries and by 23% (from US$5.78 to US$4.44) in the Asian countries. Using a health system perspective, the incremental cost-effectiveness ratio (ICER) averaged US$4,216/disability-adjusted life year (DALY) averted in the five Latin American countries (range: US$666/DALY in Puerto Rico to US$5,865/DALY in Mexico). In the five Asian countries, the ICER averaged US$3,751/DALY (range: US$1,935/DALY in Malaysia to US$5,101/DALY in the Philippines). From a health system perspective, the vaccine proved to be highly cost effective (ICER under one times the per capita GDP) in seven countries and cost effective (ICER 1-3 times the per capita GDP) in the remaining three countries. From a societal perspective, routine vaccination proved cost-saving in three countries. Including catch-up campaigns gave similar ICERs. Thus, this vaccine could have a favorable economic value in sites similar to those in the trials.
    Matched MeSH terms: Dengue Vaccines/administration & dosage; Dengue Vaccines/economics*
  10. Pang T, Gubler D, Goh DYT, Ismail Z, Asia Dengue Vaccine Advocacy Group
    Lancet, 2018 02 17;391(10121):654.
    PMID: 29617262 DOI: 10.1016/S0140-6736(18)30245-9
    Matched MeSH terms: Dengue Vaccines/adverse effects*; Dengue Vaccines/therapeutic use
  11. Hss AS, Koh MT, Tan KK, Chan LG, Zhou L, Bouckenooghe A, et al.
    Vaccine, 2013 Dec 2;31(49):5814-21.
    PMID: 24135573 DOI: 10.1016/j.vaccine.2013.10.013
    Dengue disease is a major public health problem across the Asia-Pacific region for which there is no licensed vaccine or treatment. We evaluated the safety and immunogenicity of Phase III lots of a candidate vaccine (CYD-TDV) in children in Malaysia.
    Matched MeSH terms: Dengue Vaccines/adverse effects; Dengue Vaccines/therapeutic use*
  12. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al.
    N Engl J Med, 2015 Sep 24;373(13):1195-206.
    PMID: 26214039 DOI: 10.1056/NEJMoa1506223
    BACKGROUND: A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
    METHODS: We are assessing the incidence of hospitalization for virologically confirmed dengue as a surrogate safety end point during follow-up in years 3 to 6 of two phase 3 trials, CYD14 and CYD15, and a phase 2b trial, CYD23/57. We estimated vaccine efficacy using pooled data from the first 25 months of CYD14 and CYD15.
    RESULTS: Follow-up data were available for 10,165 of 10,275 participants (99%) in CYD14 and 19,898 of 20,869 participants (95%) in CYD15. Data were available for 3203 of the 4002 participants (80%) in the CYD23 trial included in CYD57. During year 3 in the CYD14, CYD15, and CYD57 trials combined, hospitalization for virologically confirmed dengue occurred in 65 of 22,177 participants in the vaccine group and 39 of 11,089 participants in the control group. Pooled relative risks of hospitalization for dengue were 0.84 (95% confidence interval [CI], 0.56 to 1.24) among all participants, 1.58 (95% CI, 0.83 to 3.02) among those under the age of 9 years, and 0.50 (95% CI, 0.29 to 0.86) among those 9 years of age or older. During year 3, hospitalization for severe dengue, as defined by the independent data monitoring committee criteria, occurred in 18 of 22,177 participants in the vaccine group and 6 of 11,089 participants in the control group. Pooled rates of efficacy for symptomatic dengue during the first 25 months were 60.3% (95% CI, 55.7 to 64.5) for all participants, 65.6% (95% CI, 60.7 to 69.9) for those 9 years of age or older, and 44.6% (95% CI, 31.6 to 55.0) for those younger than 9 years of age.
    CONCLUSIONS: Although the unexplained higher incidence of hospitalization for dengue in year 3 among children younger than 9 years of age needs to be carefully monitored during long-term follow-up, the risk among children 2 to 16 years of age was lower in the vaccine group than in the control group. (Funded by Sanofi Pasteur; ClinicalTrials.gov numbers, NCT00842530, NCT01983553, NCT01373281, and NCT01374516.).
    Matched MeSH terms: Dengue Vaccines/adverse effects; Dengue Vaccines/immunology*
  13. Shafie AA, Yeo HY, Coudeville L, Steinberg L, Gill BS, Jahis R, et al.
    Pharmacoeconomics, 2017 May;35(5):575-589.
    PMID: 28205150 DOI: 10.1007/s40273-017-0487-3
    BACKGROUND: Dengue disease poses a great economic burden in Malaysia.

    METHODS: This study evaluated the cost effectiveness and impact of dengue vaccination in Malaysia from both provider and societal perspectives using a dynamic transmission mathematical model. The model incorporated sensitivity analyses, Malaysia-specific data, evidence from recent phase III studies and pooled efficacy and long-term safety data to refine the estimates from previous published studies. Unit costs were valued in $US, year 2013 values.

    RESULTS: Six vaccination programmes employing a three-dose schedule were identified as the most likely programmes to be implemented. In all programmes, vaccination produced positive benefits expressed as reductions in dengue cases, dengue-related deaths, life-years lost, disability-adjusted life-years and dengue treatment costs. Instead of incremental cost-effectiveness ratios (ICERs), we evaluated the cost effectiveness of the programmes by calculating the threshold prices for a highly cost-effective strategy [ICER <1 × gross domestic product (GDP) per capita] and a cost-effective strategy (ICER between 1 and 3 × GDP per capita). We found that vaccination may be cost effective up to a price of $US32.39 for programme 6 (highly cost effective up to $US14.15) and up to a price of $US100.59 for programme 1 (highly cost effective up to $US47.96) from the provider perspective. The cost-effectiveness analysis is sensitive to under-reporting, vaccine protection duration and model time horizon.

    CONCLUSION: Routine vaccination for a population aged 13 years with a catch-up cohort aged 14-30 years in targeted hotspot areas appears to be the best-value strategy among those investigated. Dengue vaccination is a potentially good investment if the purchaser can negotiate a price at or below the cost-effective threshold price.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/economics
  14. Fitzpatrick C, Haines A, Bangert M, Farlow A, Hemingway J, Velayudhan R
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005785.
    PMID: 28806786 DOI: 10.1371/journal.pntd.0005785
    INTRODUCTION: Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control.

    METHODS: We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine.

    RESULTS: Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine.

    DISCUSSION: Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/economics*
  15. Cohen C, Moreira ED, Nañez H, Nachiappan JP, Arvinder-Singh HS, Huoi C, et al.
    Vaccine, 2019 03 22;37(13):1868-1875.
    PMID: 30826144 DOI: 10.1016/j.vaccine.2019.01.087
    BACKGROUND: The background incidence of viscerotropic- (VLD) and neurotropic-like disease (NLD) unrelated to immunization in dengue-endemic countries is currently unknown.

    METHODS: This retrospective population-based analysis estimated crude and standardized incidences of VLD and NLD in twelve hospitals in Brazil (n = 3), Mexico (n = 3), and Malaysia (n = 6) over a 1-year period before the introduction of the tetravalent dengue vaccine. Catchment areas were estimated using publicly available population census information and administrative data. The denominator population for incidence rates was calculated, and sensitivity analyses assessed the impact of important assumptions.

    RESULTS: Total cases adjudicated as definite VLD were 5, 57, and 56 in Brazil, Mexico, and Malaysia, respectively. Total cases adjudicated as definite NLD were 103, 29, and 26 in Brazil, Mexico, and Malaysia, respectively. Crude incidence rates of cases adjudicated as definite VLD in Brazil, Mexico, and Malaysia were 1.17, 2.60, and 1.48 per 100,000 person-years, respectively. Crude incidence rates of cases adjudicated as definite NLD in Brazil, Mexico, and Malaysia were 4.45, 1.32, and 0.69 per 100,000 person-years, respectively.

    CONCLUSIONS: Background incidence estimates of VLD and NLD obtained in Mexico, Brazil, and Malaysia could provide context for cases occurring after the introduction of the tetravalent dengue vaccine.

    Matched MeSH terms: Dengue Vaccines/administration & dosage; Dengue Vaccines/adverse effects*; Dengue Vaccines/immunology
  16. da Silva Voorham JM
    Ned Tijdschr Geneeskd, 2014;158:A7946.
    PMID: 25227888
    Sylvatic dengue viruses are both evolutionarily and ecologically distinguishable from the human dengue virus (DENV). Sporadic episodes of sylvatic human infections in West Africa and Southeast Asia suggest that sylvatic DENV regularly come into contact with human beings. Following a study on the sylvatic transmission cycle in Malaysia in 2007, researchers announced that a new DENV serotype, DENV-5, had been discovered. Scientists are still sceptical about these new findings, and indicate that more data is necessary to determine whether this 'new' virus really is a different serotype or whether it is a variant of one of the four DENV serotypes already known. The good news is that this new variant has not yet established itself in the human transmission cycle. However, if it really is a new serotype this will have implications for the long-term control of dengue using vaccines currently under development.
    Matched MeSH terms: Dengue Vaccines/immunology
  17. Lam SK, Burke D, Capeding MR, Chong CK, Coudeville L, Farrar J, et al.
    Vaccine, 2011 Nov 28;29(51):9417-22.
    PMID: 21864627 DOI: 10.1016/j.vaccine.2011.08.047
    Infection with dengue virus is a major public health problem in the Asia-Pacific region and throughout tropical and sub-tropical regions of the world. Vaccination represents a major opportunity to control dengue and several candidate vaccines are in development. Experts in dengue and in vaccine introduction gathered for a two day meeting during which they examined the challenges inherent to the introduction of a dengue vaccine into the national immunisation programmes of countries of the Asia-Pacific. The aim was to develop a series of recommendations to reduce the delay between vaccine licensure and vaccine introduction. Major recommendations arising from the meeting included: ascertaining and publicising the full burden and cost of dengue; changing the perception of dengue in non-endemic countries to help generate global support for dengue vaccination; ensuring high quality active surveillance systems and diagnostics; and identifying sustainable sources of funding, both to support vaccine introduction and to maintain the vaccination programme. The attendees at the meeting were in agreement that with the introduction of an effective vaccine, dengue is a disease that could be controlled, and that in order to ensure a vaccine is introduced as rapidly as possible, there is a need to start preparing now.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  18. Packierisamy PR, Ng CW, Dahlui M, Inbaraj J, Balan VK, Halasa YA, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1020-1027.
    PMID: 26416116 DOI: 10.4269/ajtmh.14-0667
    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them.
    Matched MeSH terms: Dengue Vaccines/economics
  19. Nealon J, Lim WY, Moureau A, Linus Lojikip S, Junus S, Kumar S, et al.
    Vaccine, 2019 09 16;37(39):5891-5898.
    PMID: 31445770 DOI: 10.1016/j.vaccine.2019.07.083
    BACKGROUND: The world's first dengue vaccine [Dengvaxia; Sanofi Pasteur] was licensed in 2015 and others are in development. Real-world evaluations of dengue vaccines will therefore soon be needed. We assessed feasibility of case control (CC) and test-negative (TN) design studies for dengue vaccine effectiveness by measuring associations between socio-demographic risk factors, and hospitalized dengue outcomes, in Malaysia.

    METHODS: Following ethical approval, we conducted hospital-based dengue surveillance for one year in three referral hospitals. Suspected cases aged 9-25 years underwent dengue virological confirmation by RT-PCR and/or NS1 Ag ELISA at a central laboratory. Two age- and geography-matched hospitalized non-dengue case-controls were recruited for a traditional CC study. Suspected cases testing negative were test-negative controls. Socio-demographic, risk factor and routine laboratory data were collected. Logistic regression models were used to estimate associations between confirmed dengue and risk factors.

    RESULTS: We recruited 327 subjects; 155 were suspected of dengue. The planned sample size was not met. 124 (80%) of suspected cases were dengue-confirmed; seven were assessed as severe. Three had missing RT-PCR results; the study recruited 28 test-negative controls. Only 172 matched controls could be recruited; 90 cases were matched with ≥1 controls. Characteristics of cases and controls were mostly similar. By CC design, two variables were significant risk factors for hospitalized dengue: recent household dengue contact (OR: 54, 95% CI: 7.3-397) and recent neighbourhood insecticidal fogging (OR: 2.1; 95% CI: 1.3-3.6). In the TN design, no risk factors were identified. In comparison with gold-standard diagnostics, routine tests performed poorly.

    CONCLUSIONS: The CC design may be more appropriate than the TN design for hospitalized dengue vaccine effectiveness studies. Selection bias in case control selection could be minimized by protocol changes more easily than increasing TN design control numbers, because early-stage dengue diagnosis in endemic countries is highly specific. MREC study approval: (39)KKM/NIHSEC/P16-1334.

    Matched MeSH terms: Dengue Vaccines/immunology*
  20. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

    Matched MeSH terms: Dengue Vaccines/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links