Displaying publications 1 - 20 of 128 in total

Abstract:
Sort:
  1. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Drinking Water
  2. Zaini Hamzah, Ahmad Saat, Mohammed Kassim
    MyJurnal
    Many studies were carried out throughout the world on radon measurement in water especially drinking water for it can cause problem to human health. This study is an attempt to measure the level of radon present in water collect from rivers and lakes. Data gathered from this study provides important information about radiation levels in water at selected sites, because radon gas is the largest contributor to natural radioactive radiation exposure to humans. Exposure to radon gas can cause lung cancer. Liquid scintillation counting (LSC) has been applied to determine the activity concentration of radon ( 222 Rn) in water. Water samples were collected from, ex-mining lake in Perak, Sok River in Kelantan, Tembeling River in Pahang. Water samples were prepared in polyethylene bottles mixed with liquid scintillator and stored for 3 weeks to allow 222 Rn and its progeny to reach the equilibrium, and the activity concentrations ranged from 0.24-1.27 Bq/L, and 0.029 – 0.155 Bq/L for radon and radium respectively.
    Matched MeSH terms: Drinking Water
  3. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Drinking Water
  4. Zailina H, Najibah H, Aiezzati AN, Praveena SM, Patimah I
    Biomed Res Int, 2014;2014:797603.
    PMID: 25530970 DOI: 10.1155/2014/797603
    A cross-sectional study was carried out to determine the arsenic (As) and cadmium (Cd) concentrations in blood, urine, and drinking water as well as the health implications on 100 residents in an urban and a rural community. Results showed the blood As, urinary Cd, DNA damage, and water As and Cs were significantly (P < 0.001) higher in the rural community. Findings showed significant (P < 0.005) correlations between blood As and DNA damage with household income, years of residence, and total glasses of daily water consumption among the rural residents. The urinary NAG concentrations, years of residence, milk powder intake (glass/week), and seafood intake (per week) were significantly correlated (P < 0.005) with urinary Cd concentrations among respondents. In addition, urinary Cd level significantly influenced the urinary NAG concentrations (P < 0.001). The rural respondents experienced significantly higher lymphocyte DNA damage and blood As influenced by their years of residence and water consumption. The Cd in drinking water also resulted in the rural respondents having significantly higher urinary NAG which had a significant relationship with urinary Cd.
    Matched MeSH terms: Drinking Water/chemistry*
  5. Yong PL, Chan KG
    ScientificWorldJournal, 2014;2014:874764.
    PMID: 25177734 DOI: 10.1155/2014/874764
    We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.
    Matched MeSH terms: Drinking Water/microbiology*
  6. Yajima I
    Nihon Eiseigaku Zasshi, 2017;72(1):49-54.
    PMID: 28154361 DOI: 10.1265/jjh.72.49
    Several experimental studies on hygiene have recently been performed and fieldwork studies are also important and essential tools. However, the implementation of experimental studies is insufficient compared with that of fieldwork studies on hygiene. Here, we show our well-balanced implementation of both fieldwork and experimental studies of toxic-element-mediated diseases including skin cancer and hearing loss. Since the pollution of drinking well water by toxic elements induces various diseases including skin cancer, we performed both fieldwork and experimental studies to determine the levels of toxic elements and the mechanisms behind the development of toxic-element-related diseases and to develop a novel remediation system. Our fieldwork studies in several countries including Bangladesh, Vietnam and Malaysia demonstrated that drinking well water was polluted with high concentrations of several toxic elements including arsenic, barium, iron and manganese. Our experimental studies using the data from our fieldwork studies demonstrated that these toxic elements caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system that adsorbs toxic elements from polluted drinking water. A well-balanced implementation of both fieldwork and experimental studies is important for the prediction, prevention and therapy of toxic-element-mediated diseases.
    Matched MeSH terms: Drinking Water/adverse effects*; Drinking Water/analysis*
  7. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al.
    Ecotoxicol Environ Saf, 2019 Oct 30;182:109362.
    PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
    Matched MeSH terms: Drinking Water
  8. Wen Min Yun, Yu Bin Ho, Eugenie Sin Sing Tan, Vivien How
    MyJurnal
    Bisphenol A (BPA) is a controversial plastics ingredient used mainly in the production of polycarbonate plastics (PC) and epoxy resins that widely used nowadays in food and drink packaging. Even though BPA is not involved in polyethylene terephthalate (PET) manufacturing, recent study had reported the present of BPA in PET water bottle. This study was conducted to investigate effects storage conditions on release of BPA from PC and PET bottled water as well as to assess health risks associated with consumption. Methods: Solid phase extraction (SPE) was used to extract the samples, followed by analysis using ultra high performance liquid chromatography with fluorescence detector (UHPLC-FLD). The possibility of developing chronic non-carcinogenic health risk among consumers of bottled water was evaluated using hazard quotient (HQ). Results: Results showed that BPA migrated from PC and PET water bottles at concentrations ranging from 9.13 to 257.67 ng/L and 11.53 ng/L to 269.87 ng/L respectively. Concentrations of BPA were higher in PET bottled water compared to PC bottled water across all storage conditions. Higher storage temperature and longer storage duration increased BPA concentrations in PC and PET bottled water. Concentrations of BPA in bottled water which were kept in a car and were exposed to sunlight were higher than control samples which were stored indoor at room temperature. Conclusion: No significant chronic non-carcinogenic health risks were calculated for daily ingestion of BPA-contaminated bottled water; calculated HQ was less than one.
    Matched MeSH terms: Drinking Water
  9. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Rep, 2020 10 20;10(1):17755.
    PMID: 33082440 DOI: 10.1038/s41598-020-74061-5
    Contamination by endocrine disrupting compounds (EDCs) concerns the security and sustainability of a drinking water supply system and human exposure via water consumption. This study analyzed the selected EDCs in source (river water, n = 10) and supply (tap water, n = 155) points and the associated risks. A total of 14 multiclass EDCs was detected in the drinking water supply system in Malaysia. Triclosan (an antimicrobial agent) and 4-octylphenol (a plasticizer) were only detected in the tap water (up to 9.74 and 0.44 ng/L, respectively). Meanwhile, chloramphenicol and 4-nonylphenol in the system were below the method detection limits. Bisphenol A was observed to be highest in tap water at 66.40 ng/L (detection: 100%; median concentration: 0.28 ng/L). There was a significant difference in triclosan contamination between the river and tap water (p water supply system regarding treatment sustainability and water security. Further exploration of smart monitoring and management using Big Data and Internet of Things and the need to invent rapid, robust, sensitive, and efficient sensors is warranted.
    Matched MeSH terms: Drinking Water/chemistry*
  10. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of water pollutants. Diclofenac accounted for the highest concentration (21.39 ng/L), followed by triclosan and ciprofloxacin (9.74 ng/L and 8.69 ng/L, respectively). Caffeine was observed in all field samples with the highest distribution at 35.32%. Caffeine and triclosan exhibited significantly different distributions in household tap water (p water; however, the estimated risk was negligible (risk quotient water quality monitoring indicators for water resource conservation and water supply safety related to emerging organic contaminants; thus, API detection is important for safeguarding the environment and human health.
    Matched MeSH terms: Drinking Water/analysis*
  11. Wee SY, Ismail NAH, Haron DEM, Yusoff FM, Praveena SM, Aris AZ
    J Hazard Mater, 2022 02 15;424(Pt A):127327.
    PMID: 34600377 DOI: 10.1016/j.jhazmat.2021.127327
    Humans are exposed to endocrine disrupting compounds (EDCs) in tap water via drinking water. Currently, most of the analytical methods used to assess a long list of EDCs in drinking water have been made available only for a single group of EDCs and their metabolites, in contrast with other environmental matrices (e.g., surface water, sediments, and biota) for which more robust methods have been developed that allow detection of multiple groups. This study reveals an analytical method of one-step solid phase extraction, incorporated together with liquid chromatography-tandem mass spectrometry for the quantification of multiclass EDCs (i.e., pharmaceuticals, hormones, plasticizers, and pesticides) in drinking water. Fifteen multiclass EDCs significantly varied in amount between field samples (p water is unlikely to pose a health risk (risk quotient < 1). This method serves as an analytical protocol for tracing multiclass EDC contamination in tap water as part of a multibarrier approach to ensure safe drinking water for good health and well-being. It represents a simpler one-step alternative tool for drinking water analysis, thereby avoiding the time-consuming and expensive multi-extraction steps that are generally needed for analyzing multiclass EDCs.
    Matched MeSH terms: Drinking Water*
  12. Wee SY, Aris AZ
    Environ Int, 2017 09;106:207-233.
    PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004
    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
    Matched MeSH terms: Drinking Water/analysis*
  13. Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z, Umar K, et al.
    J Sep Sci, 2016 Jun;39(12):2276-83.
    PMID: 27095506 DOI: 10.1002/jssc.201600155
    A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.
    Matched MeSH terms: Drinking Water/analysis
  14. Tengku Ariff, R.H., Mohd Nazi, M.Z., Mohd Rizam, M.Z., Mohd Shahriman, M.S., Zakaria, Y., Kamal Nazmir, K., et al.
    MyJurnal
    This study was conducted to determine the health status of aboriginal ("Orang Asli') children aged 0-12 years in Post Brooke, Gua Musang, Kelantan. This is done by appraising the environmental status, patterns of illnesses including communicable diseases and usage of health resources. Six villages were selected randomly from 12 villages in the area; 179 families were interviewed, 200 under-12-year-olds were examined and their blood samples taken for haemoglobin (HB) estimation as well as malarial screening. Water supply through Gravity Feed System (GFS) was used by 134 families (70.2%) whilst the rest obtained water direct from the river for the purpose. Only 63.6% of families boiled their drinking water 56.4% families threw rubbish indiscriminately, while 82.1% used the river as their toilets. Eighty-seven percent of the families saw the village medicine man first when ill. Forty (22.2%) children had had serious illnesses including malaria and 24 were admitted to hospitals. 15% of the children had never been immunized. A total of 102 (51%) children were pale and 90 (45%) had brown hair. Eighty nine (44.5%) of the children were anaemic (Hb < 10 gm/di). Sixty-nine children (34%) had dental caries. Forty-two (21%) had distended abdomen and 37 (18.5%) had hepatomegaly. Out of 84 stool samples examined, 67 (79.8%) had helminthic ova. Of all families, 47.1% gave a past history of at least one baby among their children who had died due to one reason or another. The health status of this community (especially children) was low that it warrants special attention.
    Matched MeSH terms: Drinking Water
  15. Tafran K, Tumin M, Osman AF
    Iran J Public Health, 2020 Sep;49(9):1709-1717.
    PMID: 33643946 DOI: 10.18502/ijph.v49i9.4088
    Background: We examined whether multidimensional poverty index (MPI) explained variations in life expectancy (LE) better than income poverty; and assessed the relative importance of MPI indicators in influencing LE.

    Methods: Cross-sectional data from 62 developing countries were used to run several multivariate linear regressions. R2 was used to compare the powers of MPI with income-poverties (income poverty gaps [IPG] at 1.9 and 3.1 USD) in explaining LE.

    Results: Adjusting for controls, both MPI (β =-0.245, P<0.001) and IPG at 3.1 USD (β=-0.135, P=0.044) significantly correlates with LE, but not IPG at 1.9 USD (β=-0.147, P=0.135). MPI explains 12.1% of the variation in LE compared to only 3.2% explained by IPG at 3.1 USD. The effect of MPI on LE is higher on female (β=-0.210, P<0.001) than male (β=-0.177, P<0.001). The relative influence of the deprivation indictors on LE ranks as follows (most to least): Asset ownership, drinking water, cooking fuel, flooring, child school attendance, years of schooling, nutrition, mortality, improved sanitation, and electricity.

    Conclusion: Interventions to reduce poverty and improve LE should be guided by MPI, not income poverty indices. Such policies should be female-oriented and prioritized based on the relative influence of the various poverty deprivation indicators on LE.

    Matched MeSH terms: Drinking Water
  16. Syed Yaacob SFF, Mohd Jamil AK, Kamboh MA, Wan Ibrahim WA, Mohamad S
    PeerJ, 2018;6:e5108.
    PMID: 30002963 DOI: 10.7717/peerj.5108
    Calixarene framework functionalized bio-polymeric magnetic composites (MSp-TDI-calix) were synthesized and utilized as magnetic solid-phase extraction (MSPE) sorbent for the extraction of non-steroidal anti-inflammatory drugs (NSAIDs), namely indoprofen (INP), ketoprofen (KTP), ibuprofen (IBP) and fenoprofen (FNP), from environmental water samples. MSp-TDI-calix was characterized by FT-IR, XRD, FESEM, EDX, VSM and BET analysis, and the results were compared with Sp-TDI and Sp-TDI-calix. To maximize the extraction performance of MSp-TDI-calix decisive MSPE affective parameters such as sorbent amount, extraction time, sample volume, type of organic eluent, volume of organic eluent, desorption time and pH were comprehensively optimized prior to HPLC-DAD determination. The analytical validity of the proposed MSPE method was evaluated under optimized conditions and the following figures of merit were acquired: linearity with good determination coefficient (R2 ≥ 0.991) over the concentration range of 0.5-500 µg/L, limits of detection (LODs) ranged from 0.06-0.26 µg/L and limits of quantitation (LOQ) between 0.20-0.89 µg/L. Excellent reproducibility and repeatability under harsh environment with inter-day and intra-day relative standard deviations were obtained in the range of 2.5-3.2% and 2.4-3.9% respectively. The proposed method was successfully applied for analysis of NSAIDs in tap water, drinking water and river water with recovery efficiency ranging from 88.1-115.8% with %RSD of 1.6-4.6%.
    Matched MeSH terms: Drinking Water
  17. Stephen Ambu, Stacey Foong Yee Yong, Yvonne Ai Lian Lim, Mak Joon Wah, Donald Koh Fook Chen, Soo Shen Ooi, et al.
    MyJurnal
    Background: The public health issue of consuming groundwater is a major concern because people often extract groundwater directly from the aquifers either through wells or boreholes without treating it with any form of filtration system or chlorine disinfection. Based on the Malaysian National Drinking Water guidelines the current study was designed to provide a better understanding on the variable factors that are influencing the quality of well-water in an urbanised village in Malaysia. Well water quality assessment of heavy metals, chemicals, microbial and physical parameters were carried out for Sungai Buloh Village in the Klang Valley to ensure it was safe for human consumption.

    Materials and Methods: Water samples were collected from wells at four sites (Sites A,B,C,D), a river and a tap inside a house in Sungai Buloh village. Soil was sampled from the riverbed and area surrounding the wells. Samples were collected every two months over a one year duration from all sites. The water samples were processed and examined for viruses, coliforms and protozoa as well as for heavy metal contaminants.

    Results: The turbidity and colour ranged in the average of 0.57-0.13 Nephelometric Turbidity (NTU) and 4.16-5.00 Total Conjunctive Use (TCU) respectively for all sites except Site C. At Site C the turbidity level was 2.56 ± 1.38 NTU. The well-water was polluted with coliforms (1.2 to 2.4 x 103 CFU/100 ml) in all sites, E. coli (0.12 - 4 x 102 CFU/100 ml CFU/ 100 ml) and Cryptosporidium oocysts (0.4 cysts/100 ml). All the heavy metals and chemical parameters were within the Malaysian Guidelines’ limits except manganese. The average pH ranged from 5.44 - 6.62 and the temperature was 28 ºC.

    Conclusion: In summary, the well water at Sungai Buloh is considered unsafe for consumption due to pollution. Therefore the major thrust will be to provide better quality of drinking water to the residents of the village.
    Matched MeSH terms: Drinking Water
  18. Siti Farizwana MR, Mazrura S, Zurahanim Fasha A, Ahmad Rohi G
    J Environ Public Health, 2010;2010:615176.
    PMID: 21461348 DOI: 10.1155/2010/615176
    The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.
    Matched MeSH terms: Drinking Water/analysis*
  19. Sehreen F, Masud MM, Akhtar R, Masum MRA
    Environ Monit Assess, 2019 Jun 22;191(7):457.
    PMID: 31230139 DOI: 10.1007/s10661-019-7595-9
    The city of Dhaka has been ranked repeatedly as the most polluted, the most populous, and the most unbearable city in the world. More than 19.5 million inhabitants live in Dhaka, and the population growth rate of urban areas in Bangladesh is almost double that of rural areas. Rapid urbanization is one of the leading contributors to water pollution in Dhaka and could prevent the country from achieving sustainable development. Therefore, this study estimates respondents' willingness to pay (WTP) to improve water pollution management systems and identifies factors that influence WTP in Dhaka. This study employed the contingent valuation method (CVM) to estimate WTP of the respondents. Data were collected using a structured questionnaire with CVM questions, which was distributed to households in the study areas. The results revealed that 67% of the respondents are willing to pay for an improved water pollution management system, while 31.8% of households are unwilling to pay. The study also found that socio-economic factors (e.g., income and education) and perception significantly influence WTP. Therefore, this paper will provide directives for policymakers in developing an effective policy framework, as well as sensitize all stakeholders to the management of water pollution in Dhaka. The study suggests that social institutions, financial institutions, banks, non-government organizations (NGOs), insurance companies, and the government could provide effective outreach programs for water pollution management as part of their social responsibility.
    Matched MeSH terms: Drinking Water/analysis*
  20. Sa’adiah Shahabudin, Rohayu Hami, Lim, Lee-Sim, Amalina Salleh
    MyJurnal
    The aim of this study to assess the efficiency of flushing
    method of Dental Unit Waterline (DUWL) system in reducing the
    number of microorganism. Water samples were taken before and after
    two minutes of flushing from air-water syringes system in ten randomly
    selected dental units in a Dental Teaching Centre. These samples
    were immediately transferred to the microbiology laboratory in the cool
    box within 8 hours for the heterotrophic plate count (HPC) test. Paired
    t-test was used to analyse number of microbe before and after flushing.
    The numbers of colony forming unit (CFU) ranged from 13,000 to
    120,000CFU/ml in unflushed samples, and 3,000 to 15,000CFU/ml in
    flushed samples. The mean HPC post-flushing was lower than preflushing [8360.00 (4561.48) vs 63300.00 (44587.12) CFU/ml]. The
    mean HPC between pre- and post-flushing was significantly different
    (P=0.004, 95% CI 22039.52, 87840.48). The coliform count from the
    control was 140 CFU/ml. In conclusion, flushing method of DUWL
    system significantly reduces the number of microorganisms in the
    dental unit. However, the level of microorganisms still does not meet
    the standard guideline by Environmental Protection Agency for safe
    drinking water, which should be below 500 CFU/ml. In our opinion, the
    duration of flushing should be increased and additional chemical
    treatments of the dental units should be implemented to ensure the
    safety of patients and dental personnel.
    Matched MeSH terms: Drinking Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links