Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Epoxy Resins/chemistry*
  2. Jesuarockiam N, Jawaid M, Zainudin ES, Thariq Hameed Sultan M, Yahaya R
    Polymers (Basel), 2019 Jun 26;11(7).
    PMID: 31247898 DOI: 10.3390/polym11071085
    The aim of the present research work is to enhance the thermal and dynamic mechanical properties of Kevlar/Cocos nucifera sheath (CS)/epoxy composites with graphene nano platelets (GNP). Laminates were fabricated through the hand lay-up method followed by hot pressing. GNP at different wt.% (0.25, 0.5, and 0.75) were incorporated with epoxy resin through ultra-sonication. Kevlar/CS composites with different weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were fabricated while maintaining a fiber/matrix weight ratio at 45/55. Thermal degradation and viscoelastic properties were evaluated using thermogravimetric analysys (TGA), differential scanning calorimetric (DSC) analysis, and a dynamic mechanical analyser (DMA). The obtained results revealed that Kevlar/CS (25/75) hybrid composites at 0.75 wt.% of GNP exhibited similar thermal stability compared to Kevlar/epoxy (100/0) composites at 0 wt.% of GNP. It has been corroborated with DSC observation that GNP act as a thermal barrier. However, DMA results showed that the Kevlar/CS (50/50) hybrid composites at 0.75 wt.% of GNP exhibited almost equal viscoelastic properties compared to Kevlar/epoxy (100/0) composites at 0 wt.% GNP due to effective crosslinking, which improves the stress transfer rate. Hence, this research proved that Kevlar can be efficiently (50%) replaced with CS at an optimal GNP loading for structural applications.
    Matched MeSH terms: Epoxy Resins
  3. Tang X, Yang Y, Xie Y
    Sains Malaysiana, 2016;45:1543-1550.
    The main objective of this work was to investigate the influence of waterborne epoxy resin emulsion (WER) on the physical properties of oil well cement slurries. Cement slurries containing 5%, 10% and 15% of WER bwoc were compared with WER-free slurries. The rheological behavior was carried out according to API standard. Uniaxial compressive strength and shear bond strength of cement stone were evaluated at the ages of 24, 48 and 72 h. The experimental results illustrate that the addition of WER does not alter the rheological behavior. The addition of WER has increased the shear bond strength almost 52% at 24 h of aging for 10% WER bwoc when compared with unmodified slurry. The enhancement on shear bond strength was attributed to the mechanical anchoring and resin film forming at the interface
    Matched MeSH terms: Epoxy Resins
  4. Ismail, N.M., Ismail, A.R., Wan Nor Syuhada, W.A.R.
    MyJurnal
    Root canal treatment (RCT) requires high level of technical skills of the dentist. Its outcome is an important part of evidence-based practice and become the basis of treatment planning and prognostic considerations. Adequate removal of micro-organisms and prevention of recolonization of residual micro-organisms through the placement of root filling with satisfactory coronal seal ensures success. This retrospective record review study aimed to investigate the practices of RCT in Hospital Universiti Sains Malaysia (HUSM) Dental Clinic, Kota Bharu, Kelantan. It involved 333 randomly selected patient records at the HUSM Record Unit. Data was obtained by careful analyses of daily treatment progress sheets and analyzed using SPSS version 12.0. A total of 2996 RCT cases were seen and 59.8% of patients were females. The age range of patients varied from 14 to 64 years. The maxillary anterior teeth were most commonly treated (52.6%). Most operators (99.1%) used step-back technique and 97.6% used files to prepare root canals. The most commonly used material for obturation and sealing was gutta-percha and epoxy resin-based sealer (AH26). About 82.9% used calcium hydroxide as intra-canal medication. About 25.5% of cases had no periapical pathology, 65.8% with pre-existing periapical radiolucencies healed in 1-3 months whereas 2.1% of cases with periapical pathology eventually healed after a year. About 6.9% cases failed after retreatment. The number of radiographs taken was two to four pieces. RCT is a useful intervention to maintain longevity of teeth. Decision making and current updates of methods and materials are essential among practitioners as well as administrators to ensure success.
    Matched MeSH terms: Epoxy Resins
  5. Nur Ain, A.R., Mohd Sabri, M.G., Wan Rafizah, W.A., Nurul Azimah, M.A., Wan Nik, W.B.
    ASM Science Journal, 2018;11(101):56-67.
    MyJurnal
    Corrosion is a natural deterioration process that destructs metal surface. Metal of highly
    protected by passivation layer such as Stainless Steel 316L also undergoes pitting corrosion
    when continuously exposed to aggressive environment. To overcome this phenomenon, application
    of epoxy based coating with addition of zinc oxide- poly (3,4-ethylenedioxythiophene)
    doped with poly (styrene sulphonate) hybrid nanocomposite additive was introduced as
    paint/metal surface coating. The compatibility between these two materials as additive
    was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD),
    Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray spectroscopy (FESEM/EDX)
    and Transmission Electron Microscopy (TEM) analysis. The effect of nanocomposite
    wt.% in epoxy based coating with immersion duration in real environment on corrosion
    protection performance was analyzed through potentiodynamic polarization analysis. The
    main finding showed that addition of hybrid nanocomposite had increased corrosion protection
    yet enhanced corrosion process when excess additives was loaded into epoxy coating.
    Addition of 2 wt.% ZnO-PEDOT:PSS was found significantly provided optimum corrosion
    protection to stainless steel 316L as the corrosion rate for 0 day, 15 days and 30 days of
    immersion duration is 0.0022 mm/yr, 0.0004 mm/yr and 0.0015 mm/yr; respectively.
    Matched MeSH terms: Epoxy Resins
  6. Farhana Mohamed Ghazali, Wan Lutfi Wan Johari
    MyJurnal
    This review paper briefly explains the meaning and characteristics of endocrine disrupting compounds (EDCs). EDCs comprise various types of natural and synthetic chemical compounds that can impede the reproductive action of the endocrine system in animals and humans. Further discussion is on bisphenol A (BPA), one of the examples of EDCs that is extensively used in industries nowadays. It acts as a monomer, which is desired in the production of polycarbonate plastics and epoxy resins. BPA later ends up in environmental compartments (air, water, sediment). In spite of this, BPA is not categorized as a persistent compound and it will be degraded either by photolysis or bacteria. It can only exist between three and five days in the environment. The concentration of BPA varies in different locations depending on the temperature, pH, source and time of sampling. BPA has been frequently debated due to its toxicity and carcinogenicity towards animals and humans. This paper also explains several extraction procedures and analytical methods concerning how to identify BPA in either aqueous or solid samples. However, an additional review is needed in respect of how to handle, reduce the level of BPA in the environment and understand the details concerning the existence of BPA.
    Matched MeSH terms: Epoxy Resins
  7. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Epoxy Resins/therapeutic use; Epoxy Resins/chemistry
  8. Wen Min Yun, Yu Bin Ho, Eugenie Sin Sing Tan, Vivien How
    MyJurnal
    Bisphenol A (BPA) is a controversial plastics ingredient used mainly in the production of polycarbonate plastics (PC) and epoxy resins that widely used nowadays in food and drink packaging. Even though BPA is not involved in polyethylene terephthalate (PET) manufacturing, recent study had reported the present of BPA in PET water bottle. This study was conducted to investigate effects storage conditions on release of BPA from PC and PET bottled water as well as to assess health risks associated with consumption. Methods: Solid phase extraction (SPE) was used to extract the samples, followed by analysis using ultra high performance liquid chromatography with fluorescence detector (UHPLC-FLD). The possibility of developing chronic non-carcinogenic health risk among consumers of bottled water was evaluated using hazard quotient (HQ). Results: Results showed that BPA migrated from PC and PET water bottles at concentrations ranging from 9.13 to 257.67 ng/L and 11.53 ng/L to 269.87 ng/L respectively. Concentrations of BPA were higher in PET bottled water compared to PC bottled water across all storage conditions. Higher storage temperature and longer storage duration increased BPA concentrations in PC and PET bottled water. Concentrations of BPA in bottled water which were kept in a car and were exposed to sunlight were higher than control samples which were stored indoor at room temperature. Conclusion: No significant chronic non-carcinogenic health risks were calculated for daily ingestion of BPA-contaminated bottled water; calculated HQ was less than one.
    Matched MeSH terms: Epoxy Resins
  9. Noor Erna Fatini Mohd, Mariatti Jaafar, Tuti Katrina Abdullah
    MyJurnal
    Carbon fiber reinforced epoxy (CFRE) is commonly been used in automotive and aviation industries. However, CFRE composite exhibits the problem of adherence between fiber and matrix. The interface between carbon fiber (CF) and epoxy becomes a weak zone and leads to the debonding defect of fiber and low mechanical properties of composites. The main focus of this study is to fabricate CFRE using carbon nanotubes (CNTs), as the hybrid reinforcement with CF. Ultrasonic method is used to disperse CNTs in distilled water for 20 minutes, followed by deposition of CNTs on CF using electrophoretic deposition (EPD) technique. Hand lay-up assisted vacuum bagging is employed to fabricate CNTs/CF/Epoxy composite. From morphologies, surface topography and peel off testing, it can be confirmed that 30 minutes deposition allowed more CNTs to deposit on CF. The flexural properties shows that 30 minutes deposition inherited high flexural strength, 67.4 MPa and modulus, 8490 MPa.
    Matched MeSH terms: Epoxy Resins
  10. Ikramullah, Rizal S, Nakai Y, Shiozawa D, Khalil HPSA, Huzni S, et al.
    Materials (Basel), 2019 Jul 10;12(14).
    PMID: 31295885 DOI: 10.3390/ma12142225
    The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.
    Matched MeSH terms: Epoxy Resins
  11. Wong KJ, Johar M, Koloor SSR, Petrů M, Tamin MN
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32971855 DOI: 10.3390/polym12092162
    It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
    Matched MeSH terms: Epoxy Resins
  12. Koloor SSR, Rahimian-Koloor SM, Karimzadeh A, Hamdi M, Petrů M, Tamin MN
    Polymers (Basel), 2019 Sep 02;11(9).
    PMID: 31480660 DOI: 10.3390/polym11091435
    The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10-8 (aPa·nm-1), 9.75 × 10-10 (nm), 2.1 × 10-10 (N·nm-1) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface.
    Matched MeSH terms: Epoxy Resins
  13. Kirmasha YK, Sharba MJ, Leman Z, Sultan MTH
    Materials (Basel), 2020 Oct 28;13(21).
    PMID: 33126437 DOI: 10.3390/ma13214801
    Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.
    Matched MeSH terms: Epoxy Resins
  14. Hasma H, Subramaniam A
    Lipids, 1978 Dec;13(12):905-7.
    PMID: 27520427 DOI: 10.1007/BF02533847
    Methyl esters from the triglyceride fraction of the neutral lipids of natural rubber latex were found by gas liquid chromatography to contain about 90% of a furanoid acid. Spectroscopic analysis identified the acid as 10,13-epoxy-11-methyloctadeca-10,12-dienoic acid.
    Matched MeSH terms: Epoxy Resins
  15. Nur Hanis Adila Azhar, Nur Hanis Adila Azhar Hamizah Md Rasid, Siti Fairus M. Yusoff
    Sains Malaysiana, 2017;46:485-491.
    Liquid natural rubber (LNR) was functionalized into liquid epoxidized natural rubber (LENR) and hydroxylated LNR (LNROH)
    via oxidation using a Na2
    WO4
    /CH3
    COOH/H2
    O2
    catalytic system. Microstructures of LNR and functionalized LNRs
    were characterized using Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. The
    effect of CH3
    COOH, H2
    O2
    , Na2
    WO4
    , reaction time and temperature. reaction time and temperature on epoxy content were
    investigated. LNR-OH was obtained when oxidation reaction was conducted at a longer reaction time, higher temperature
    or excess amount of catalyst. Thermogravimetric analysis (TGA) reported the thermal behavior of functionalized LNRs.
    Molecular weight and polydispersity index (PDI) were determined using gel permeation chromatography (GPC).
    Matched MeSH terms: Epoxy Resins
  16. Ullah H, Qureshi KS, Khan U, Zaffar M, Yang YJ, Rabat NE, et al.
    Chemosphere, 2021 Dec;285:131492.
    PMID: 34273691 DOI: 10.1016/j.chemosphere.2021.131492
    The restoration of mechanical properties is desired for creating the self-healing coatings with no corrosion capabilities. The encapsulation of epoxy resins is limited by various factors in urea and melamine formaldehyde microcapsules. An improved method was developed, where epoxy resin was encapsulated by individual wrapping of poly(melamine-formaldehyde) and poly(urea-formaldehyde) shell around emulsified epoxy droplets via oil-in-water emulsion polymerization method. The synthesized materials were characterized analytically. The curing of the epoxy was achieved by adding the [Ni/Co(2-MI)6].2NO3 as a latent hardener and iron acetylacetonate [Fe(acac)3] as a latent accelerator. Isothermal and non-isothermal differential scanning calorimetric analysis revealed lower curing temperature (Tonset = 116 °C) and lower activation energies (Ea ≈ 69-75 kJ/mol). The addition of microcapsules and complexes did not adversely alter the flexural strength and flexural modulus of the epoxy coatings. The adhesion strength of neat coating decreased from 6310.8 ± 31 to 4720.9 ± 60 kPa and percent healing increased from 50.83 to 67.45% in the presence of acetylacetonate complex at 10 wt% of microcapsules.
    Matched MeSH terms: Epoxy Resins*
  17. Shan TO, Mee LN, Marinah Mohd Ariffin, Saw HL
    Sains Malaysiana, 2017;46:615-621.
    Bisphenol A is an endocrine disruptor with widespread applications, especially in the production of polycarbonate and epoxy resins. Dispersive liquid-liquid microextraction based on solidification of floating organic technique has been developed for the extraction of bisphenol A from water and soft drink. The 1-undecanol has been applied as the extraction solvent because of its low density and melting point and high affinity to the analyte. The technique offered rapid and simple analysis as the 1-undecanol was homogeneously dispersed in the sample solution to speed the extraction and the collection of extraction solvent was simplified by centrifugation, cooling and melting steps.
    Matched MeSH terms: Epoxy Resins
  18. Smran A, Abdullah M, Ahmad NA, Ben Yahia F, Fouda AM, Alturaiki SA, et al.
    PLoS One, 2024;19(3):e0299552.
    PMID: 38483853 DOI: 10.1371/journal.pone.0299552
    This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.
    Matched MeSH terms: Epoxy Resins
  19. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
    Matched MeSH terms: Epoxy Resins/chemistry*
  20. Md Shah AU, Hameed Sultan MT, Safri SNA
    Polymers (Basel), 2020 Jun 04;12(6).
    PMID: 32512848 DOI: 10.3390/polym12061288
    Six impact energy values, ranging from 2.5 J to 10 J, were applied to study the impact properties of neat epoxy and bamboo composites, while six impact energy values, ranging from 10 J to 35 J, were applied on bamboo/glass hybrid composites. Woven glass fibre was embedded at the outermost top and bottom layer of bamboo powder-filled epoxy composites, producing sandwich structured hybrid composites through lay-up and molding techniques. A drop weight impact test was performed to study the impact properties. A peak force analysis showed that neat epoxy has the stiffest projectile for targeting interaction, while inconsistent peak force data was collected for the non-hybrid composites. The non-hybrid composites could withstand up to 10 J, while the hybrid composites showed a total failure at 35 J. It can be concluded that increasing the filler loading lessened the severity of damages in non-hybrid composites, while introducing the woven glass fibre could slow down the penetration of the impactor, thus lowering the chances of a total failure of the composites.
    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links