Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Smran A, Abdullah M, Ahmad NA, Ben Yahia F, Fouda AM, Alturaiki SA, et al.
    PLoS One, 2024;19(3):e0299552.
    PMID: 38483853 DOI: 10.1371/journal.pone.0299552
    This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.
    Matched MeSH terms: Epoxy Resins
  2. Chew ST, Eshak Z, Al-Haddad A
    Microsc Res Tech, 2023 Jul;86(7):754-761.
    PMID: 37078493 DOI: 10.1002/jemt.24323
    To assess the interfacial adaptation and penetration depth of three different bioceramic-based sealers (CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG) compared to an epoxy resin-based sealer (AH Plus) in oval root canals. Fourty extracted single-rooted mandibular premolar with oval canal were prepared and randomly allocated according to the obturation into; CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG and AH Plus. The roots were sectioned at 3, 6 and 9 mm from the apex. The sealer adaptation and the penetration depth were evaluated under confocal laser scanning microscope. One-way ANOVA and Repeated measure ANOVA were used to statistically analyze the data. Nishika Canal Sealer BG showed significantly higher sealer adaptation than EndoSeal MTA (P 
    Matched MeSH terms: Epoxy Resins
  3. Zainuddin NAMN, Razak NAA, Karim MSA, Osman NAA
    Sci Rep, 2023 Feb 15;13(1):2664.
    PMID: 36792914 DOI: 10.1038/s41598-022-21990-y
    Acrylic and epoxy are common types of resin used in fabricating sockets. Different types of resin will affect the internal surface of a laminated socket. This paper is to determine the best combination of ratio for epoxy and acrylic resin for a laminated prosthesis socket and to evaluate the surface profile analysis of different combinations of laminated prosthetic sockets for surface roughness. Transfemoral sockets were created using various resin-to-hardener ratios of 2:1, 3:1, 3:2, 2:3, and 1:3 for epoxy resin and 100:1, 100:2, 100:3, 100:4, and 100:5 for acrylic resin. Eight layers of stockinette consisting of four elastic stockinette and four Perlon stockinette were used. A sample with a size of 4 cm × 6 cm was cut out from the socket on the lateral side below the Greater Trochanter area. The Mitutoyo Sj-210 Surface Tester stylus was run through the sample and gave the Average Surface Roughness value (Ra), Root Mean Square Roughness value (Rq), and Ten-Point Mean Roughness value (Rz). Epoxy resin shows a smoother surface compared to acrylic resin with Ra values of is 0.766 µm, 0.9716 µm, 0.9847 µm and 1.5461 µm with 3:2, 3:1, 2:1 and 2:3 ratio respectively. However, for epoxy resin with ratio 1:3, the resin does not cure with the hardener. As for acrylic resin the Ra values are 1.0086 µm, 2.362 µm, 3.372 µm, 4.762 µm and 6.074 µm with 100: 1, 100:2, 100:5, 100:4 and 100:3 ratios, respectively. Epoxy resin is a better choice in fabricating a laminated socket considering the surface produced is smoother.
    Matched MeSH terms: Epoxy Resins*
  4. Karobari MI, Batul R, Snigdha NTS, Al-Rawas M, Noorani TY
    PLoS One, 2023;18(11):e0294076.
    PMID: 37956149 DOI: 10.1371/journal.pone.0294076
    INTRODUCTION: Root canal sealing materials play a crucial role in an endodontic procedure by forming a bond between the dentinal walls and the gutta-percha. The current study aims to analyse the dentinal tubule penetration and adhesive pattern, including the push-out bond strength of six commercially available root canal sealers.

    METHODOLOGY: Eighty-four mandibular first premolars were split into seven groups (and n = 12), Group 1: Dia-Root, Group 2: One-Fil, Group 3: BioRoot RCS, Group 4: AH Plus, Group 5: CeraSeal, Group 6: iRoot SP, Group 7: GP without sealer (control). Two groups were made, one for dentinal tubule penetration and the other for push-out bond strength; the total sample size was one hundred sixty-eight. Root canal treatment was performed using a method called the crown down technique, and for obturation, the single cone technique was used. A confocal laser scanning microscope (Leica, Microsystem Heidel GmbH, Version 2.00 build 0585, Germany) was used to evaluate dentinal tubule penetration, and Universal Testing Machine was utilised to measure the push-out bond strength (Shimadzu, Japan) using a plunger size of 0.4 mm and speed of 1mm/min. Finally, the adhesive pattern of the sealers was analysed by HIROX digital microscope (KH-7700). Statistical analysis was carried out by a one-way Anova test, Dunnet's T3 test, and Chi-square test.

    RESULTS: Highest dentinal tubule penetration was noticed with One-Fil (p<0.05), followed by iRoot SP, CeraSeal, AH Plus, Dia-Root also, the most negligible value was recorded for BioRoot RCS. Meanwhile, BioRoot RCS (p<0.05) demonstrated the greater value of mean push-out bond strength, followed by One-fil, iRoot SP, CeraSeal, AH Plus and Dia-Root. Regarding adhesive pattern, most of the samples were classified as type 3 and type 4 which implies greater sealing ability and better adherence to the dentinal wall. However, BioRoot RCS revealed the most type 4 (p<0.05), followed by AH Plus, One-Fil, CeraSeal and Dia-Root.

    CONCLUSION: The highest dentinal tubule penetration was shown by One-Fil compared to other groups. Meanwhile, BioRoot RCS had greater push-out bond strength and more adhesive pattern than other tested materials.

    Matched MeSH terms: Epoxy Resins
  5. Ullah H, Qureshi KS, Khan U, Zaffar M, Yang YJ, Rabat NE, et al.
    Chemosphere, 2021 Dec;285:131492.
    PMID: 34273691 DOI: 10.1016/j.chemosphere.2021.131492
    The restoration of mechanical properties is desired for creating the self-healing coatings with no corrosion capabilities. The encapsulation of epoxy resins is limited by various factors in urea and melamine formaldehyde microcapsules. An improved method was developed, where epoxy resin was encapsulated by individual wrapping of poly(melamine-formaldehyde) and poly(urea-formaldehyde) shell around emulsified epoxy droplets via oil-in-water emulsion polymerization method. The synthesized materials were characterized analytically. The curing of the epoxy was achieved by adding the [Ni/Co(2-MI)6].2NO3 as a latent hardener and iron acetylacetonate [Fe(acac)3] as a latent accelerator. Isothermal and non-isothermal differential scanning calorimetric analysis revealed lower curing temperature (Tonset = 116 °C) and lower activation energies (Ea ≈ 69-75 kJ/mol). The addition of microcapsules and complexes did not adversely alter the flexural strength and flexural modulus of the epoxy coatings. The adhesion strength of neat coating decreased from 6310.8 ± 31 to 4720.9 ± 60 kPa and percent healing increased from 50.83 to 67.45% in the presence of acetylacetonate complex at 10 wt% of microcapsules.
    Matched MeSH terms: Epoxy Resins*
  6. Suriani MJ, Zainudin HA, Ilyas RA, Petrů M, Sapuan SM, Ruzaidi CM, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068794 DOI: 10.3390/polym13091532
    The application of natural fibers is rapidly growing in many sectors, such as construction, automobile, and furniture. Kenaf fiber (KF) is a natural fiber that is in demand owing to its eco-friendly and renewable nature. Nowadays, there are various new applications for kenaf, such as in absorbents and building materials. It also has commercial applications, such as in the automotive industry. Magnesium hydroxide (Mg(OH)2) is used as a fire retardant as it is low in cost and has good flame retardancy, while polyester yarn (PET) has high tensile strength. The aim of this study was to determine the horizontal burning rate, tensile strength, and surface morphology of kenaf fiber/PET yarn reinforced epoxy fire retardant composites. The composites were prepared by hybridized epoxy and Mg(OH)2 PET with different amounts of KF content (0%, 20%, 35%, and 50%) using the cold press method. The specimen with 35% KF (epoxy/PET/KF-35) displayed better flammability properties and had the lowest average burning rate of 14.55 mm/min, while epoxy/PET/KF-50 with 50% KF had the highest tensile strength of all the samples. This was due to fewer defects being detected on the surface morphology of epoxy/PET/KF-35 compared to the other samples, which influenced the mechanical properties of the composites.
    Matched MeSH terms: Epoxy Resins
  7. Ali A, Andriyana A, Hassan SBA, Ang BC
    Polymers (Basel), 2021 Apr 29;13(9).
    PMID: 33947012 DOI: 10.3390/polym13091437
    The development of advanced composite materials has taken center stage because of its advantages over traditional materials. Recently, carbon-based advanced additives have shown promising results in the development of advanced polymer composites. The inter- and intra-laminar fracture toughness in modes I and II, along with the thermal and electrical conductivities, were investigated. The HMWCNTs/epoxy composite was prepared using a multi-dispersion method, followed by uniform coating at the mid-layers of the CF/E prepregs interface using the spray coating technique. Analysis methods, such as double cantilever beam (DCB) and end notched flexure (ENF) tests, were carried out to study the mode I and II fracture toughness. The surface morphology of the composite was analyzed using field emission scanning electron microscopy (FESEM). The DCB test showed that the fracture toughness of the 0.2 wt.% and 0.4 wt.% HMWCNT composite laminates was improved by 39.15% and 115.05%, respectively, compared with the control sample. Furthermore, the ENF test showed that the mode II interlaminar fracture toughness for the composite laminate increased by 50.88% and 190%, respectively. The FESEM morphology results confirmed the HMWCNTs bridging at the fracture zones of the CF/E composite and the improved interlaminar fracture toughness. The thermogravimetric analysis (TGA) results demonstrated a strong intermolecular bonding between the epoxy and HMWCNTs, resulting in an improved thermal stability. Moreover, the differential scanning calorimetry (DSC) results confirmed that the addition of HMWCNT shifted the Tg to a higher temperature. An electrical conductivity study demonstrated that a higher CNT concentration in the composite laminate resulted in a higher conductivity improvement. This study confirmed that the demonstrated dispersion technique could create composite laminates with a strong interfacial bond interaction between the epoxy and HMWCNT, and thus improve their properties.
    Matched MeSH terms: Epoxy Resins
  8. Leemsuthep A, Zakaria Z, Tanrattanakul V, Ramarad S, Muniyadi M, Jaruga T, et al.
    Materials (Basel), 2021 Apr 28;14(9).
    PMID: 33924997 DOI: 10.3390/ma14092282
    This paper explored the effects of ammonium bicarbonate and different ratios of epoxy to polyamide on the formation of porous epoxy micro-beads through a single epoxy droplet. A single drop of a mixture, consisting of epoxy, polyamide, and ammonium bicarbonate, was dropped into heated corn oil at a temperature of 100 °C. An epoxy droplet was formed due to the immiscibility of the epoxy mixture and corn oil. The ammonium bicarbonate within this droplet underwent a decomposition reaction, while the epoxy and polyamide underwent a curing reaction, to form porous epoxy micro-beads. The result showed that the higher ammonium bicarbonate content in the porous, epoxy micro-beads increased the decomposition rate up to 11.52 × 10-3 cm3/s. In addition, a higher total volume of gas was generated when a higher ammonium bicarbonate content was decomposed. This led to the formation of porous epoxy micro-beads with a smaller particle size, lower specific gravity, and better thermal stability. At an epoxy to polyamide ratio of 10:6, many smaller micro-beads, with particle sizes ranging from 201 to 400 μm, were obtained at an ammonium bicarbonate content of 10 phr. Moreover, the porous epoxy micro-beads with open pores were shown to have a low specific gravity of about 0.93 and high thermal stability at a high ammonium bicarbonate content. Based on the findings, it was concluded that porous epoxy micro-beads were successfully produced using a single epoxy droplet in heated corn oil, where their shape and particle size depended on the content of ammonium bicarbonate and the ratio of epoxy to polyamide used.
    Matched MeSH terms: Epoxy Resins
  9. Mas'ud AA, Sundaram A, Ardila-Rey JA, Schurch R, Muhammad-Sukki F, Bani NA
    Sensors (Basel), 2021 Apr 06;21(7).
    PMID: 33917472 DOI: 10.3390/s21072562
    In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon strongly linked to partial discharge (PD) activity. Their initiation and development have attracted the attention of the research community and better understanding and characterization of the phenomenon are needed. They are very damaging and develop through the insulation material forming a discharge conduction path. Therefore, it is important to adequately measure and characterize tree growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture model (GMM) has been applied to cluster and classify the different growth stages of electrical trees in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM was applied to categorize the different electrical tree stages into clusters. The results show that PD dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with shorter breakdown times had identical clusters throughout the degradation stages. The breakdown time can be a key factor in determining the degradation levels of PD patterns emanating from trees in epoxy resin. This is important in order to determine the severity of electrical treeing degradation, and, therefore, to perform efficient asset management. The novelty of the work presented in this paper is that for the first time the GMM has been applied for electrical tree growth classification and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate covariance structure, have been determined for the different electrical tree clusters.
    Matched MeSH terms: Epoxy Resins
  10. Huseien GF, Sam ARM, Faridmehr I, Baghban MH
    Materials (Basel), 2021 Mar 06;14(5).
    PMID: 33800835 DOI: 10.3390/ma14051255
    This research investigated the application of epoxy resin polymer as a self-healing strategy for improving the mechanical and durability properties of cement-based mortar. The epoxy resin was added to the concrete mix at various levels (5, 10, 15, and 20% of cement weight), and the effectiveness of healing was evaluated by microstructural analysis, compressive strength, and non-destructive (ultrasonic pulse velocity) tests. Dry and wet-dry conditions were considered for curing, and for generating artificial cracks, specimens at different curing ages (1 and 6 months) were subjected to compressive testing (50 and 80% of specimen's ultimate compressive strength). The results indicated that the mechanical properties in the specimen prepared by 10% epoxy resin and cured under wet-dry conditions was higher compared to other specimens. The degree of damage and healing efficiency index of this particular mix design were significantly affected by the healing duration and cracking age. An optimized artificial neural network (ANN) combined with a firefly algorithm was developed to estimate these indexes over the self-healing process. Overall, it was concluded that the epoxy resin polymer has high potential as a mechanical properties self-healing agent in cement-based mortar.
    Matched MeSH terms: Epoxy Resins
  11. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
    Matched MeSH terms: Epoxy Resins/chemistry*
  12. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Epoxy Resins
  13. Hussin R, Sharif S, Nabiałek M, Zamree Abd Rahim S, Khushairi MTM, Suhaimi MA, et al.
    Materials (Basel), 2021 Feb 01;14(3).
    PMID: 33535504 DOI: 10.3390/ma14030665
    The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.
    Matched MeSH terms: Epoxy Resins
  14. Lin GSS, Ghani NRNA, Noorani TY, Ismail NH, Mamat N
    Odontology, 2021 Jan;109(1):149-156.
    PMID: 32623538 DOI: 10.1007/s10266-020-00535-7
    To compare the dislodgement resistance and the adhesive pattern of four different endodontic sealers to root dentine walls. Ninety lower premolars were assigned to five groups (n = 18), Group 1: no sealer (control); Group 2: EndoRez (ERZ); Group 3: Sealapex (SPX); Group 4: EndoSeal MTA (ESA) and Group 5: BioRoot RCS (BRS). They were instrumented up to size 30 taper 0.06 and obturated using single cone technique with matched-taper gutta-percha cones and one of the mentioned sealers. Six teeth from each group were then randomly subjected to 100, 1000 and 10,000 thermocycles, respectively. 1 mm slice of mid root region, measuring 6 mm from the apical foramen was prepared and subjected to push-out test under a Universal Testing Machine. Adhesive patterns of sealers were assessed using a stereomicroscope at 20 × magnification and classified using a new system. Statistical analyses were performed using two-way ANOVA, complemented by Tukey HSD and Chi-square tests. ESA and BRS showed significantly higher (p  0.05) at 100, 1000 and 10,000 thermocycles, respectively. Both ESA and BRS exhibited a significant higher rate (p 
    Matched MeSH terms: Epoxy Resins
  15. Kirmasha YK, Sharba MJ, Leman Z, Sultan MTH
    Materials (Basel), 2020 Oct 28;13(21).
    PMID: 33126437 DOI: 10.3390/ma13214801
    Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.
    Matched MeSH terms: Epoxy Resins
  16. Ismail I, Arliyani, Jalil Z, Mursal, Olaiya NG, Abdullah CK, et al.
    Polymers (Basel), 2020 Sep 28;12(10).
    PMID: 32998404 DOI: 10.3390/polym12102236
    Conventionally, panel boards are produced with material flex or microparticle with P.U. or U.F. as adhesives. However, in this study, nanoparticle with epoxy resin as an adhesive was used to produce nanoboard. Coconut shell nanoparticle composite with epoxy resin as an adhesive was prepared using a compression molding technique. The coconut shell particles were originally 200 mesh size and then milled mechanically with a ball mill for the duration of 10, 20, 30, and 40 h (milling times) to produce nanoparticles. The composition ratio of the composite is 85 vol.% of coconut shell and 15 vol.% of epoxy resin. The formation of nanoparticles was observed with transmission electron microscopy (TEM). The mechanical, physical, and microstructure properties of the composite were examined with X-ray diffraction, scanning electron microscopy, atomic force microscopy, and universal testing machine. The results established that the properties of the composite (microstructures, mechanical, and physical) are influenced by the duration of milling of coconut shell particles. The modulus and flexural strength of the composite improved with an increase in the milling time. The density, thickness swelling, and porosity of the composite were also influenced by the milling times. The result suggested that the composite properties were influenced by the particle size of the coconut shell. The coconut shell nanoparticle composite can be used in the manufacturing of hybrid panels and board.
    Matched MeSH terms: Epoxy Resins
  17. Wong KJ, Johar M, Koloor SSR, Petrů M, Tamin MN
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32971855 DOI: 10.3390/polym12092162
    It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
    Matched MeSH terms: Epoxy Resins
  18. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
    Matched MeSH terms: Epoxy Resins
  19. Abdulkader YC, Kamaruddin AF, Mydin RBSMN
    Saudi Dent J, 2020 Sep;32(6):306-313.
    PMID: 32874071 DOI: 10.1016/j.sdentj.2019.09.010
    Objectives: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE).

    Methods: The posterior parts of the archwires were sectioned into 20 mm segments (N = 102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10 ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37 °C water bath for 28 days. After 28 days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210 s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM).

    Results: Significant coating loss (p 

    Matched MeSH terms: Epoxy Resins
  20. Arumugam S, Kandasamy J, Md Shah AU, Hameed Sultan MT, Safri SNA, Abdul Majid MS, et al.
    Polymers (Basel), 2020 Jul 06;12(7).
    PMID: 32640502 DOI: 10.3390/polym12071501
    This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young's modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.
    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links