Displaying publications 1 - 20 of 101 in total

Abstract:
Sort:
  1. Pui Kei C, Mohd Nordin NA, Abdul Aziz AF
    Medicine (Baltimore), 2020 Nov 20;99(47):e23296.
    PMID: 33217861 DOI: 10.1097/MD.0000000000023296
    INTRODUCTION: Stroke survivors are commonly at risk of functional decline following discharge from rehabilitation, which increase their susceptibility to falls, dependency in activities of daily living and emotional disturbances. To combat these, continued therapy is important. Home-based therapy (HBT) has been shown to be useful in maintaining functional performance and quality of life of chronic stroke survivors. However, evidence on its effectiveness remains limited, while no studies are available to date which report the benefit of HBT on stroke survivors self-efficacy and emotional status. Therefore, this study aims to assess the effectiveness of post-discharge HBT in comparison to usual practice on functional outcome (mobility and gait speed), self-efficacy and anxiety level among stroke survivors.

    METHODS: This is an assessor-blinded randomized control trial comparing 2 types of intervention which are HBT (experimental group) and usual practice (UP) (control group). Based on sample size calculation using GPower, a total number of 42 participants will be recruited and allocated into either the HBT or the UP group. Participants in HBT group will receive a set of structured exercise therapy consisting of progressive strengthening, balance and task-related exercises. While participants in UP group will receive a usual "intervention" practised by rehabilitation professional prior to discharging stroke patients from their care. Both groups are advised to perform the given interventions for 3 times per week for 12 weeks under the supervision of their caregiver. Outcomes of interventions will be measured using timed up and go test (for mobility), ten-meter walk test (for gait speed), stroke self-efficacy questionnaire (for self-efficacy) and hospital anxiety and depression scale (for anxiety level). All data will be analyzed using descriptive and inferential statistics.

    DISCUSSION: This study will provide the information on the effectiveness of HBT in comparison to UP among stroke population who are discharged from rehabilitation. Findings from the study will enable rehabilitation professionals to design effective discharge care plan for stroke survivors in combating functional decline when no longer receiving hospital-based therapy.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12619001182189 (last updated 22/11/2019).

    Matched MeSH terms: Gait
  2. Loong CW, Firdaus MAM, Said MRM, Abidin IZ
    Medeni Med J, 2020;35(3):266-270.
    PMID: 33110680 DOI: 10.5222/MMJ.2020.47374
    Takotsubo syndrome is a rare disease and remained ambiguous with its etiology. The disease manifests in various clinical characteristics and even mimicking acute coronary syndrome. We are reporting a case of an elderly lady who manifested by unsteady gaits and recurrent falls. Subacute infarct of the right corona radiata was observed on the brain CT. In addition, coronary angiography and ventriculogram were performed because of dynamic ECG changes and elevated troponin I levels. The angiogram was normal while ventriculogram showed apical ballooning. She was diagnosed and treated as Takotsubo syndrome.
    Matched MeSH terms: Gait
  3. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Proc Inst Mech Eng H, 2020 Jul;234(7):749-757.
    PMID: 32459132 DOI: 10.1177/0954411920924525
    The conservative techniques of treating knee osteoarthritis (kOA) include wearing orthoses such as knee braces and laterally wedged insoles and applying gait modification techniques such as toe-in gait and toe-out gait. This study aimed at assessing the immediate effects of these techniques in improving physical function of healthy and kOA participants. Five Osteoarthritis Research Society International (OARSI) recommended performance-based tests were randomly applied to measure physical function: (1) 30-second chair stand test (30CST), (2) 40-m (4 × 10) fast-paced walk test (40FPW), (3) stair climb test (SCT), (4) timed up and go test (TUGT) and (5) 6-minute walk test (6MWT) during a single-visit on 20 healthy and 20 kOA patients (age: 59.5 ± 7.33 and 61.5 ± 8.63 years, BMI: 69.95 ± 9.86 and 70.45 ± 8.80 kg/m2). The interventions included natural gait, toe-out gait, toe-in gait, laterally wedged insoles and knee brace. Analysis was performed through repeated-measures ANOVA and independent sample t-test. 30CST and TUGT showed no significant differences for the five test conditions (p > 0.05). Toe-out showed profound effects via pairwise comparison in impairing the physical function while knee brace improved it during 40FPW, SCT and 6MWT. In general, all the tested conservative techniques except laterally wedged insoles had immediate effects on physical performance measures in both healthy and medial knee osteoarthritis participants. The valgus knee brace improved the parameters the most, while toe-out gait impaired them the most. Future studies can develop strategies for improving gait retraining methods on the basis of issues identified by this study.
    Matched MeSH terms: Gait/physiology*
  4. Sobh KNM, Abd Razak NA, Abu Osman NA
    Proc Inst Mech Eng H, 2021 Apr;235(4):419-427.
    PMID: 33517847 DOI: 10.1177/0954411920985753
    Electromyography signal has been used widely as input for prosthetic's leg movements. C-Leg, for example, is among the prosthetics devices that use electromyography as the main input. The main challenge facing the industrial party is the position of the electromyography sensor as it is fixed inside the socket. The study aims to investigate the best positional parameter of electromyography for transtibial prosthetic users for the device to be effective in multiple movement activities and compare with normal human muscle's activities. DELSYS Trigno wireless electromyography instrument was used in this study to achieve this aim. Ten non-amputee subjects and two transtibial amputees were involved in this study. The surface electromyography signals were recorded from two anterior and posterior below the knee muscles and above the knee muscles, respectively: tibial anterior and gastrocnemius lateral head as well as rectus femoris and biceps femoris during two activities (flexion and extension of knee joint and gait cycle for normal walking). The result during flexion and extension activities for gastrocnemius lateral head and biceps femoris muscles was found to be more useful for the control subjects, while the tibial anterior and also gastrocnemius lateral head are more active for amputee subjects. Also, during normal walking activity for biceps femoris and gastrocnemius lateral head, it was more useful for the control subjects, while for transtibial amputee subject-1, the rectus femoris was the highest signal of the average normal walking activity (0.0001 V) compared to biceps femoris (0.00007 V), as for transtibial amputee subject-2, the biceps femoris was the highest signals of the average normal walking activity (0.0001 V) compared to rectus femoris (0.00004 V). So, it is difficult to rely entirely on the static positioning of the electromyography sensor within the socket as there is a possibility of the sensor to contact with inactive muscle, which will be a gap in the control, leading to a decrease in the functional efficiency of the powered prostheses.
    Matched MeSH terms: Gait*
  5. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Prosthet Orthot Int, 2019 Apr;43(2):148-157.
    PMID: 30192706 DOI: 10.1177/0309364618796849
    BACKGROUND:: Knee osteoarthritis is a major contributor to the global burden of disease. There is a need of reducing knee joint load and to improve balance and physical function among knee osteoarthritis patients.

    OBJECTIVES:: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients.

    STUDY DESIGN:: Single visit study with repeated measures.

    METHODS:: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8).

    RESULTS:: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%.

    CONCLUSION:: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level.

    CLINICAL RELEVANCE: Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.

    Matched MeSH terms: Gait/physiology*
  6. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Gait Posture, 2018 03;61:243-249.
    PMID: 29413792 DOI: 10.1016/j.gaitpost.2018.01.024
    OBJECTIVE: To test the hypothesis that toe-in gait (TI) will further reduce first peak (Knee Adduction Moment) KAM and decrease balance when combined with a knee brace (KB) and laterally wedged insoles (LWI) in medial knee osteoarthritis (kOA) patients.
    PARTICIPANTS: Twenty patients with bilateral symptomatic medial kOA.
    INTERVENTIONS: 4-point leverage-based KB, full-length LWI with 5° inclination and toe-in gait (TI).
    MAIN OUTCOME MEASURES: First and second peak knee adduction moment (fKAM and sKAM respectively), balance and pain.
    METHODS: The fKAM and sKAM were determined from 3-dimensional gait analysis with six randomized conditions: (1) N (without any intervention), (2) KB, (3) KB + TI, (4) LWI, (5) LWI + TI, (6) KB + LWI + TI. Balance was assessed by Biodex Balance System using three stability settings, (i) Static (ii) Moderate dynamic setting for fall risk (FR12) and (iii) High dynamic setting for fall risk (FR8).
    RESULTS: The reduction in fKAM and sKAM was greatest (19.75% and 12%) when TI was combined with KB and LWI respectively. No change in balance was observed when TI combined with KB, and LWI and when used concurrently with both the orthosis at static and FR12 conditions. Significant balance reduction was found at FR8 for KB + TI (22.22%), and KB + LWI + TI (35.71%). Pain increased significantly for KB (258%), KB + TI (305%), LWI + TI (210%) and KB + LWI + TI (316%). LWI showed no effect on pain.
    CONCLUSIONS: There is a synergistic effect of TI when combined with KB and LWI concurrently in sKAM reduction. However, the concurrent use of TI, KB and LWI decreases balance and pain as assessed on a highly dynamic platform.
    Study site: Department of Sports Medicine, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Gait/physiology*
  7. Tham LK, Al Kouzbary M, Al Kouzbary H, Liu J, Abu Osman NA
    Phys Eng Sci Med, 2023 Dec;46(4):1723-1739.
    PMID: 37870729 DOI: 10.1007/s13246-023-01332-6
    Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the unconstrained environment. This study employs a neural network-based model in estimating three-dimensional body segmental orientation of the lower limb amputees during gait. Using a wearable system with inertial sensors attached to the lower limb segments, thirteen individuals with lower limb amputation performed two-minute walk tests on a robotic foot and a passive foot. The proposed model replicates features of a complementary filter to estimate drift free three-dimensional orientation of the intact and prosthetic limbs. The results indicate minimal estimation biases and high correlation, validating the ability of the proposed model to reproduce the properties of a complementary filter while avoiding the drawbacks, most notably in the transverse plane due to gravitational acceleration and magnetic disturbance. Results of this study also demonstrates the capability of the well-trained model to accurately estimate segmental orientation, regardless of amputation level, in different types of locomotion task.
    Matched MeSH terms: Gait*
  8. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Alqahtani M, Almijalli M, et al.
    Sensors (Basel), 2021 Apr 17;21(8).
    PMID: 33920617 DOI: 10.3390/s21082836
    Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.
    Matched MeSH terms: Gait
  9. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Sci Rep, 2023 Sep 27;13(1):16177.
    PMID: 37758958 DOI: 10.1038/s41598-023-43428-9
    Gait data collection from overweight individuals walking on irregular surfaces is a challenging task that can be addressed using inertial measurement unit (IMU) sensors. However, it is unclear how many IMUs are needed, particularly when body attachment locations are not standardized. In this study, we analysed data collected from six body locations, including the torso, upper and lower limbs, to determine which locations exhibit significant variation across different real-world irregular surfaces. We then used deep learning method to verify whether the IMU data recorded from the identified body locations could classify walk patterns across the surfaces. Our results revealed two combinations of body locations, including the thigh and shank (i.e., the left and right shank, and the right thigh and right shank), from which IMU data should be collected to accurately classify walking patterns over real-world irregular surfaces (with classification accuracies of 97.24 and 95.87%, respectively). Our findings suggest that the identified numbers and locations of IMUs could potentially reduce the amount of data recorded and processed to develop a fall prevention system for overweight individuals.
    Matched MeSH terms: Gait
  10. Firdaus Sukarman, Mohd Ghazali Mohd Hamami, Mazleenda Mazni, Muhammad Amir Mat Shah, Ahmad Faidzal Khodori
    MyJurnal
    The utilization of parallelogram structure in a small-sized humanoid robot consists of two parallel platforms that are linked serially in each leg. The thigh and shank of each leg consists of two servomotors as actuator and linked in parallel platform. By using parallel mechanism in leg structure, foot sole surface is always parallel to the walking surface at any point. Even it looks unnatural to human-like walking motion, the expected result is the robot can maintain it posture while walking and at the point foot sole touch the walking surface, unnecessary vibrates can be modulated at the certain level to remain its balance. The effectiveness and the performance of the proposed parallel platforms are experimented by using zero moment point (ZMP) method by taking various scenario data from pressure sensors attached at the footsole. Planned walking gait is introduced to be identical in terms of foot steps length and width of each leg swing. As the results, in terms of load in each actuator, required torque at servomotors can be reduced because two servomotors are used simultaneously in one parallel system. Stable walking gait can be predicted as the quantity of error falls within the error ranges from the published walking gait patterns.
    Matched MeSH terms: Gait
  11. Sado F, Yap HJ, Ghazilla RAR, Ahmad N
    PLoS One, 2018;13(7):e0200193.
    PMID: 30001415 DOI: 10.1371/journal.pone.0200193
    Prolong walking is a notable risk factor for work-related lower-limb disorders (WRLLD) in industries such as agriculture, construction, service profession, healthcare and retail works. It is one of the common causes of lower limb fatigue or muscular exhaustion leading to poor balance and fall. Exoskeleton technology is seen as a modern strategy to assist worker's in these professions to minimize or eliminate the risk of WRLLDs. Exoskeleton has potentials to benefit workers in prolong walking (amongst others) by augmenting their strength, increasing their endurance, and minimizing high muscular activation, resulting in overall work efficiency and productivity. Controlling exoskeleton to achieve this purpose for able-bodied personnel without impeding their natural movement is, however, challenging. In this study, we propose a control strategy that integrates a Dual Unscented Kalman Filter (DUKF) for trajectory generation/prediction of the spatio-temporal features of human walking (i.e. joint position, and velocity, and acceleration) and an impedance cum supervisory controller to enable the exoskeleton to follow this trajectory to synchronize with the human walking. Experiment is conducted with four subjects carrying a load and walking at their normal speed- a typical scenario in industries. EMG signals taken at two muscles: Right Vastus Intermedius (on the thigh) and Right Gastrocnemius (on the calf) indicated reduction in muscular activation during the experiment. The results also show the ability of the control system to predict spatio-temporal features of the pilots' walking and to enable the exoskeleton to move in concert with the pilot.
    Matched MeSH terms: Gait/physiology
  12. Veeraragavan S, Gopalai AA, Gouwanda D, Ahmad SA
    Front Physiol, 2020;11:587057.
    PMID: 33240106 DOI: 10.3389/fphys.2020.587057
    Gait analysis plays a key role in the diagnosis of Parkinson's Disease (PD), as patients generally exhibit abnormal gait patterns compared to healthy controls. Current diagnosis and severity assessment procedures entail manual visual examinations of motor tasks, speech, and handwriting, among numerous other tests, which can vary between clinicians based on their expertise and visual observation of gait tasks. Automating gait differentiation procedure can serve as a useful tool in early diagnosis and severity assessment of PD and limits the data collection to solely walking gait. In this research, a holistic, non-intrusive method is proposed to diagnose and assess PD severity in its early and moderate stages by using only Vertical Ground Reaction Force (VGRF). From the VGRF data, gait features are extracted and selected to use as training features for the Artificial Neural Network (ANN) model to diagnose PD using cross validation. If the diagnosis is positive, another ANN model will predict their Hoehn and Yahr (H&Y) score to assess their PD severity using the same VGRF data. PD Diagnosis is achieved with a high accuracy of 97.4% using simple network architecture. Additionally, the results indicate a better performance compared to other complex machine learning models that have been researched previously. Severity Assessment is also performed on the H&Y scale with 87.1% accuracy. The results of this study show that it is plausible to use only VGRF data in diagnosing and assessing early stage Parkinson's Disease, helping patients manage the symptoms earlier and giving them a better quality of life.
    Matched MeSH terms: Gait
  13. Said Mogutham NN, Abdullah JM, Idris Z, Ghani ARI, Abdul Halim S, Naesarajoo JJJ, et al.
    Malays J Med Sci, 2020 Dec;27(6):89-101.
    PMID: 33447137 DOI: 10.21315/mjms2020.27.6.9
    Background: Dizziness is a common presenting complaint among patients in Malaysia. It is a vague term which could be associated with vertigo, imbalance, ataxia or syncope. In order to deal with this overwhelming complaint, a detailed history-taking is essential in confirming aetiology of disease and this should be followed by a meticulous clinical examination. The purpose of the video manuscript it to provide a step-by-step approach to a dizzy and swaying patient, specially catered for Malaysian medical students and trainees.

    Methods: A series of videos were shot, which involved the eye, ear, vestibular system, cerebellar, proprioceptive sense and gait examination. These videos, conducted in Universiti Sains Malaysia (USM) School of Medical Sciences, will be first in Malaysia and will highlight the proper technique and rapport with patients and essential points of each examination. There will be summary at the end of each examination on how to report findings which is a common weakness among students.

    Conclusion: We hope that students and junior doctors could be apply these methods in their daily assessment of dizzy patients and ultimately, reach an accurate diagnosis.

    Matched MeSH terms: Gait
  14. Ahmed, M., Huq, M.S., Ibrahim, B.S.K.K., Ahmed, A.
    Movement Health & Exercise, 2018;7(1):211-223.
    MyJurnal
    Functional Electrical Stimulation (FES) can be used to revive movement
    functions of the human body to a certain degree which was lost due to
    occurrences of the nervous system disorders resulting from accidents or
    diseases. It can also be employed for gait rehabilitation as well as therapy.
    Control systems could be employed to improve on the FES-induced motion,
    and the closed-loop was targeted due to its advantages. Based on the papers
    reviewed, studies have shown that the linear control schemes are popular for
    movement restoration in the lower limb, but mostly for continuous standing
    contributing to mainly the stance phase. Therefore, a myriad of limitations
    was observed which include: the need for using improved sensors, re-tuning
    for every subject, tests conducted using patient with more straightforward
    ailments, complexity in implementation and most importantly is the issue of
    stability. The swing phase of gait movement and the full walking motion have
    more complex dynamics and coupled with the nature of the plant (human with
    nervous system disorder and the neuromuscular structure) could render the
    linear control method obsolete or unsuitable. Hence, there is a need to
    investigate other techniques such as the nonlinear and intelligent control
    methods.
    Matched MeSH terms: Gait
  15. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    PLoS One, 2014;9(5):e94520.
    PMID: 24827560 DOI: 10.1371/journal.pone.0094520
    The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees' gait performance.
    Matched MeSH terms: Gait/physiology*
  16. Justine M, Manaf H, Sulaiman A, Razi S, Alias HA
    Biomed Res Int, 2014;2014:640321.
    PMID: 24977154 DOI: 10.1155/2014/640321
    This study compares energy expenditure (EE), gait parameters (GP), and level of fatigue (LOF) between 5-minute walking with sharp turning (ST) and corner turning (CT). Data were obtained from 29 community-dwelling elderly (mean age, 62.7 ± 3.54 years). For 5 minutes, in ST task, participants walked on a 3-meter pathway with 2 cones placed at each end (180° turning), while in CT task, participants walked on a 6-meter pathway with 4 cones placed at 4 corners (90° turning). The physiological cost index, pedometer, and 10-point Modified Borg Dyspnoea Scale were used to measure EE (beats/min), GP (no of steps), and LOF, respectively. Data were analyzed by using independent t-tests. EE during ST (0.62 ± 0.21 beats/min) was significantly higher than CT (0.48 ± 0.17 beats/min) (P < 0.05). GP (434 ± 92.93 steps) and LOF (1.40 ± 1.11) in ST were found to be lower compared to GP (463 ± 92.18 steps) and LOF (1.54 ± 1.34) in CT (All, P > 0.05). Higher EE in ST could be due to the difficulty in changing to a 180° direction, which may involve agility and different turning strategies (step-turn or pivot-turn) to adjust the posture carefully. In CT, participants could choose a step-turn strategy to change to a 90° direction, which was less challenging to postural control.
    Matched MeSH terms: Gait/physiology*
  17. Ong SCL, Nur Azidawati AH, Liew YH, Anita S
    Med J Malaysia, 2017 10;72(5):311-313.
    PMID: 29197889 MyJurnal
    Acute necrotising encephalopathy of childhood (ANEC) is an uncommon disease with characteristic clinical and imaging findings. We present two cases of ANEC secondary to Respiratory Syncytial Virus (RSV) and mycoplasma infections. An eight-month-old boy presented with features of gastroenteritis but soon developed multiple episodes of seizures. Blood and CSF cultures were negative but nasopharyngeal aspirate immunofluorescence was positive for RSV. A nine-year-old girl presented with abnormal behaviour following two days of prodromal symptoms. Her serological markers implicated mycoplasma (IgM titre 1: 640). CT brain of both patients showed bilateral symmetrical thalamic hypodensities, while MRI revealed more extensive white matter involvements.
    Matched MeSH terms: Gait Disorders, Neurologic
  18. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al.
    J Am Med Dir Assoc, 2014 Feb;15(2):95-101.
    PMID: 24461239 DOI: 10.1016/j.jamda.2013.11.025
    Sarcopenia, a newly recognized geriatric syndrome, is characterized by age-related decline of skeletal muscle plus low muscle strength and/or physical performance. Previous studies have confirmed the association of sarcopenia and adverse health outcomes, such as falls, disability, hospital admission, long term care placement, poorer quality of life, and mortality, which denotes the importance of sarcopenia in the health care for older people. Despite the clinical significance of sarcopenia, the operational definition of sarcopenia and standardized intervention programs are still lacking. It is generally agreed by the different working groups for sarcopenia in the world that sarcopenia should be defined through a combined approach of muscle mass and muscle quality, however, selecting appropriate diagnostic cutoff values for all the measurements in Asian populations is challenging. Asia is a rapidly aging region with a huge population, so the impact of sarcopenia to this region is estimated to be huge as well. Asian Working Group for Sarcopenia (AWGS) aimed to promote sarcopenia research in Asia, and we collected the best available evidences of sarcopenia researches from Asian countries to establish the consensus for sarcopenia diagnosis. AWGS has agreed with the previous reports that sarcopenia should be described as low muscle mass plus low muscle strength and/or low physical performance, and we also recommend outcome indicators for further researches, as well as the conditions that sarcopenia should be assessed. In addition to sarcopenia screening for community-dwelling older people, AWGS recommends sarcopenia assessment in certain clinical conditions and healthcare settings to facilitate implementing sarcopenia in clinical practice. Moreover, we also recommend cutoff values for muscle mass measurements (7.0 kg/m(2) for men and 5.4 kg/m(2) for women by using dual X-ray absorptiometry, and 7.0 kg/m(2) for men and 5.7 kg/m(2) for women by using bioimpedance analysis), handgrip strength (<26 kg for men and <18 kg for women), and usual gait speed (<0.8 m/s). However, a number of challenges remained to be solved in the future. Asia is made up of a great number of ethnicities. The majority of currently available studies have been published from eastern Asia, therefore, more studies of sarcopenia in south, southeastern, and western Asia should be promoted. On the other hand, most Asian studies have been conducted in a cross-sectional design and few longitudinal studies have not necessarily collected the commonly used outcome indicators as other reports from Western countries. Nevertheless, the AWGS consensus report is believed to promote more Asian sarcopenia research, and most important of all, to focus on sarcopenia intervention studies and the implementation of sarcopenia in clinical practice to improve health care outcomes of older people in the communities and the healthcare settings in Asia.
    Matched MeSH terms: Gait/physiology
  19. Chan CK, Mohamed RM, Azlina AA, Azhar MM
    Malays Orthop J, 2016 Nov;10(3):42-45.
    PMID: 28553448 MyJurnal DOI: 10.5704/MOJ.1611.004
    Multicentric disappearing bone disease, or Gorham disease, is a rare entity. A middle age woman, presented to us with left sided antalgic gait and severe bony deformity of her left knee. Radiograph revealed massive bone defect of the medial condyle of the left tibia with subluxation of the knee joint. She was scheduled for knee replacement in six months. However, she developed another lesion over the right hip that typically mimicked the disease progression of disappearing bone disease. The right femoral head vanished progressively within three months without significant history of infection or trauma. Subsequent bone biopsy of the right femoral head and left tibia condyle confirmed the diagnosis. Total knee replacement was carried out for her left knee. She remained pain free on her left knee. A year later, after confirming by sequential radiographs that the osteolysis had stopped, total right hip replacement was performed. Five years later, she remained pain free and both the arthroplasties were stable.
    Matched MeSH terms: Gait
  20. Cuk A, Bezdan T, Jovanovic L, Antonijevic M, Stankovic M, Simic V, et al.
    Sci Rep, 2024 Feb 21;14(1):4309.
    PMID: 38383690 DOI: 10.1038/s41598-024-54680-y
    Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.
    Matched MeSH terms: Gait
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links