Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Wu YL, Wang XH, Li YY, Hong HS, Li HY, Yin MD
    Huan Jing Ke Xue, 2009 Sep 15;30(9):2512-9.
    PMID: 19927796
    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core collected from Langkawi Island of the Andaman Sea, Malaysia were determined by GC/MS, the vertical variations of concentration and distributions of PAHs were investigated. In combining with 210Pb-dating, the PAHs sedimentary record in the last 100 years was reconstructed and their possible sources were also discussed. The sigmaPAH concentration ranged from 13.2-60.1 ng x g(-1) in the whole sedimentary section (0-56 cm) with the dominant compounds of phenanthrene, naphthalene and perylene. The sediments contaminated to a lesser extent comparing with the surrounding waters. Before the 1920s, the concentrations of PAHs were considered to be the background level, which was implied from the natural inputs. The historical records of PAHs in the core showed that two distinct peaks which represented the input time of 1960s and 1980s, respectively, inferred that there were some relatively dramatically land-based inputs, and human activities leaded a clear impact to these waters during these periods. Furthermore, PAHs diagnostic ratios indicated that PAHs in the core sediments were mainly of pyrolytic origin (combustion), accompanied with minor petroleum origin. These were related with agriculture, industry, ocean import and export, and shipping activities in the surrounding regions. Meanwhile as the vital communication line, the marine transportation of the Strait of Malacca had influenced the environmental quality of the Andaman Sea. Meanwhile, based on the sedimentary record, PAHs concentrations were found to correlate positively with humanism activities and socioeconomic development (Gross Domestic Production) in the surrounding regions.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  2. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis
  3. Kong SR, Yamamoto M, Shaari H, Hayashi R, Seki O, Mohd Tahir N, et al.
    PLoS One, 2021;16(9):e0256853.
    PMID: 34495997 DOI: 10.1371/journal.pone.0256853
    The reconstruction of fire history is essential to understand the palaeoclimate and human history. Polycyclic aromatic hydrocarbons (PAHs) have been extensively used as a fire marker. In this work, the distribution of PAHs in Borneo peat archives was investigated to understand how PAHs reflect the palaeo-fire activity. In total, 52 peat samples were analysed from a Borneo peat core for the PAH analysis. Pyrogenic PAHs consist of 2-7 aromatic rings, some of which have methyl and ethyl groups. The results reveal that the concentration of pyrogenic PAHs fluctuated with the core depth. Compared to low-molecular-weight (LMW) PAHs, the high-molecular-weight (HMW) PAHs had a more similar depth variation to the charcoal abundance. This finding also suggests that the HMW PAHs were mainly formed at a local fire near the study area, while the LMW PAHs could be transported from remote locations.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/classification; Polycyclic Hydrocarbons, Aromatic/chemistry
  4. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  5. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/metabolism*; Polycyclic Hydrocarbons, Aromatic/chemistry*
  6. Ismail A, Juahir H, Mohamed SB, Toriman ME, Kassim AM, Zain SM, et al.
    Water Sci Technol, 2021 Mar;83(5):1039-1054.
    PMID: 33724935 DOI: 10.2166/wst.2021.038
    The main focus of this study is exploring the spatial distribution of polyaromatics hydrocarbon links between oil spills in the environment via Support Vector Machines based on Kernel-Radial Basis Function (RBF) approach for high precision classification of oil spill type from its sample fingerprinting in Peninsular Malaysia. The results show the highest concentrations of Σ Alkylated PAHs and Σ EPA PAHs in ΣTAH concentration in diesel from the oil samples PP3_liquid and GP6_Jetty achieving 100% classification output, corresponding to coherent decision boundary and projective subspace estimation. The high dimensional nature of this approach has led to the existence of a perfect separability of the oil type classification from four clustered oil type components; i.e diesel, bunker C, Mixture Oil (MO), lube oil and Waste Oil (WO) with the slack variables of ξ ≠ 0. Of the four clusters, only the SVs of two are correctly predicted, namely diesel and MO. The kernel-RBF approach provides efficient and reliable oil sample classification, enabling the oil classification to be optimally performed within a relatively short period of execution and a faster dataset classification where the slack variables ξ are non-zero.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic*
  7. Othman M, Latif MT, Jamhari AA, Abd Hamid HH, Uning R, Khan MF, et al.
    Chemosphere, 2021 Jan;262:127767.
    PMID: 32763576 DOI: 10.1016/j.chemosphere.2020.127767
    This study aimed to determine the spatial distribution of PM2.5 and PM10 collected in four regions (North, Central, South and East Coast) of Peninsular Malaysia during the southwest monsoon. Concurrent measurements of PM2.5 and PM10 were performed using a high volume sampler (HVS) for 24 h (August to September 2018) collecting a total of 104 samples. All samples were then analysed for water soluble inorganic ions (WSII) using ion chromatography, trace metals using inductively coupled plasma-mass spectroscopy (ICP-MS) and polycyclic aromatic hydrocarbon (PAHs) using gas chromatography-mass spectroscopy (GC-MS). The results showed that the highest average PM2.5 concentration during the sampling campaign was in the North region (33.2 ± 5.3 μg m-3) while for PM10 the highest was in the Central region (38.6 ± 7.70 μg m-3). WSII recorded contributions of 22% for PM2.5 and 20% for PM10 mass, with SO42- the most abundant species with average concentrations of 1.83 ± 0.42 μg m-3 (PM2.5) and 2.19 ± 0.27 μg m-3 (PM10). Using a Positive Matrix Factorization (PMF) model, soil fertilizer (23%) was identified as the major source of PM2.5 while industrial activity (25%) was identified as the major source of PM10. Overall, the studied metals had hazard quotients (HQ) value of <1 indicating a very low risk of non-carcinogenic elements while the highest excess lifetime cancer risk (ELCR) was recorded for Cr VI in the South region with values of 8.4E-06 (PM2.5) and 6.6E-05 (PM10). The incremental lifetime cancer risk (ILCR) calculated from the PAH concentrations was within the acceptable range for all regions.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  8. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, et al.
    Mar Pollut Bull, 2009 Feb;58(2):189-200.
    PMID: 19117577 DOI: 10.1016/j.marpolbul.2008.04.049
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/chemistry*
  9. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2013 Aug 9;1302:14-9.
    PMID: 23809804 DOI: 10.1016/j.chroma.2013.06.010
    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/isolation & purification; Polycyclic Hydrocarbons, Aromatic/chemistry*
  10. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  11. Masood N, Halimoon N, Aris AZ, Zakaria MP, Vaezzadeh V, Magam SM, et al.
    Environ Geochem Health, 2018 Dec;40(6):2551-2572.
    PMID: 29802607 DOI: 10.1007/s10653-018-0122-z
    Rapid increase in industrialization and urbanization in the west coast of Peninsular Malaysia has led to the intense release of petroleum and products of petroleum into the environment. Surface sediment samples were collected from the Selangor River in the west coast of Peninsular Malaysia during four climatic seasons and analyzed for PAHs and biomarkers (hopanes). Sediments were soxhlet extracted and further purified and fractionated through first and second step column chromatography. A gas chromatography-mass spectrometry (GC-MS) was used for analysis of PAHs and hopanes fractions. The average concentrations of total PAHs ranged from 219.7 to 672.3 ng g-1 dw. The highest concentrations of PAHs were detected at 964.7 ng g-1 dw in station S5 in the mouth of the Selangor River during the wet inter-monsoonal season. Both pyrogenic and petrogenic PAHs were detected in the sediments with a predominance of the former. The composition of hopanes was homogeneous showing that petroleum hydrocarbons share an identical source in the study area. Diagnostic ratios of hopanes indicated that some of the sediment samples carry the crankcase oil signature.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  12. Gan S, Lau EV, Ng HK
    J Hazard Mater, 2009 Dec 30;172(2-3):532-49.
    PMID: 19700241 DOI: 10.1016/j.jhazmat.2009.07.118
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic micropollutants which are resistant to environmental degradation due to their highly hydrophobic nature. Concerns over their adverse health effects have resulted in extensive studies on the remediation of soils contaminated with PAHs. This paper aims to provide a review of the remediation technologies specifically for PAH-contaminated soils. The technologies discussed here include solvent extraction, bioremediation, phytoremediation, chemical oxidation, photocatalytic degradation, electrokinetic remediation, thermal treatment and integrated remediation technologies. For each of these, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic*
  13. Poh BL, Khairuddean M
    Talanta, 1996 Oct;43(10):1727-31.
    PMID: 18966659
    A non-cyclic tetrameric structure has been suggested for calcichrome (calcion). This structure is consistent with its mass spectrum, proton NMR spectrum, elemental composition and complexing ability with polyaromatic hydrocarbons in water. The stability constants of the 1:1 complexes formed between calcichrome and seven polyaromatic hydrocarbons in water at room temperature have been measured.
    Matched MeSH terms: Hydrocarbons, Aromatic
  14. Agus BAP, Hussain N, Selamat J
    Food Chem, 2020 Jan 15;303:125398.
    PMID: 31470272 DOI: 10.1016/j.foodchem.2019.125398
    Roasting is an important process in cocoa production which may lead to formation of non-desirable compounds such as polycyclic aromatic hydrocarbons (PAHs). Therefore, PAH4 (sum of four different polycyclic aromatic hydrocarbons; benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in roasted cocoa beans was determined using a modified method (combination of QuEChERS and DLLME), and quantified by HPLC-FLD. The modified method was validated and met the performance criteria required by the EU Regulation (No. 836/2011). Results show a significant (p 
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/isolation & purification*
  15. Lee H, Jae J, Lee HW, Park S, Jeong J, Lam SS, et al.
    J Hazard Mater, 2020 02 15;384:121231.
    PMID: 31577973 DOI: 10.1016/j.jhazmat.2019.121231
    The fast pyrolysis of waste lignin derived from biobutanol production process was performed to determine the optimal pyrolysis conditions and pyrolysis product properties. Four types of pyrolysis reactors, e.g.: micro-scale pyrolyzer-gas chromatography/mass spectrometry, lab and bench scale fixed bed (FB) reactors, and bench scale rotary kiln (RK) reactor, were employed to compare the pyrolysis reaction conditions and product properties obtained from different reactors. The yields of char, oil, and gas obtained from lab scale and bench scale reactor were almost similar compared to FB reactor. RK reactor produced desirable bio-oil with much reduced yield of poly aromatic hydrocarbons (cancer precursor) due to its higher cracking reaction efficiency. In addition, char agglomeration and foaming of lignin pyrolysis were greatly restricted by using RK reactor compared to the FB reactor.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis
  16. Tang PL, Hassan O, Maskat MY, Badri K
    Biomed Res Int, 2015;2015:891539.
    PMID: 26798644 DOI: 10.1155/2015/891539
    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
    Matched MeSH terms: Hydrocarbons, Aromatic/chemistry*
  17. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Mehdinia A, Safari O
    PLoS One, 2014;9(4):e94907.
    PMID: 24747349 DOI: 10.1371/journal.pone.0094907
    Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/toxicity
  18. Pakpahan EN, Isa MH, Kutty SR, Chantara S, Wiriya W
    Environ Technol, 2013 Jan-Feb;34(1-4):407-16.
    PMID: 23530354
    Petroleum sludge is a hazardous waste that contains various organic compounds including polycyclic aromatic hydrocarbons (PAHs) which have carcinogenic-mutagenic and toxic characteristics. This study focuses on the thermal treatment (indirect heating) of petroleum sludge cake for PAH degradation at 250, 450, and 650 degrees C using Ca(OH)2 + NaHCO3 as an additive. The treatment was conducted in a rotary drum electric heater. All experiments were carried out in triplicate. Concentrations of the 16 priority PAHs in gas (absorbed on Amberlite XAD-4 adsorbent), particulate (on quartz filter) and residue phases were determined using gas chromatography-mass spectrometry (GC-MS). The samples were extracted with acetonitrile by ultra-sonication prior to GC-MS analysis. The use of additive was beneficial and a temperature of 450 degrees C was suitable for PAH degradation. Low levels of PAH emissions, particularly carcinogenic PAH and toxic equivalent concentration (sigma TEC), were observed in gas, particulate and residue phases after treatment.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/chemistry*
  19. Zakaria MP, Okuda T, Takada H
    Mar Pollut Bull, 2001 Dec;42(12):1357-66.
    PMID: 11827123
    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/classification
  20. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF
    Asian Pac J Cancer Prev, 2016;17(1):15-23.
    PMID: 26838201
    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links