Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al.
    J Clin Lipidol, 2014 Mar-Apr;8(2):148-72.
    PMID: 24636175 DOI: 10.1016/j.jacl.2014.01.002
    Familial hypercholesterolemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected, and current treatment is often suboptimal. To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment, and management of FH in adults and children and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of noncholesterol risk factors, and the safe and effective use of low-density lipoprotein-lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed. This international guidance acknowledges evidence gaps but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be used to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
    Matched MeSH terms: Hyperlipoproteinemia Type II/metabolism; Hyperlipoproteinemia Type II/pathology*; Hyperlipoproteinemia Type II/therapy*
  2. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al.
    Eur J Prev Cardiol, 2015 Jul;22(7):849-54.
    PMID: 24776375 DOI: 10.1177/2047487314533218
    Familial hypercholesterolaemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL) cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected and current treatment is often suboptimal.To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment and management of FH in adults and children, and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of non-cholesterol risk factors and safe and effective use of LDL lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed.This international guidance acknowledges evidence gaps, but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be employed to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/therapy*
  3. Stein EA, Dann EJ, Wiegman A, Skovby F, Gaudet D, Sokal E, et al.
    J Am Coll Cardiol, 2017 Aug 29;70(9):1162-1170.
    PMID: 28838366 DOI: 10.1016/j.jacc.2017.06.058
    BACKGROUND: Homozygous familial hypercholesterolemia (HoFH), a rare genetic disorder, is characterized by extremely elevated levels of low-density lipoprotein cholesterol (LDL-C) and accelerated atherosclerotic cardiovascular disease. Statin treatment starts at diagnosis, but no statin has been formally evaluated in, or approved for, HoFH children.

    OBJECTIVES: The authors sought to assess the LDL-C efficacy of rosuvastatin versus placebo in HoFH children, and the relationship with underlying genetic mutations.

    METHODS: This was a randomized, double-blind, 12-week, crossover study of rosuvastatin 20 mg versus placebo, followed by 12 weeks of open-label rosuvastatin. Patients discontinued all lipid-lowering treatment except ezetimibe and/or apheresis. Clinical and laboratory assessments were performed every 6 weeks. The relationship between LDL-C response and genetic mutations was assessed by adding children and adults from a prior HoFH rosuvastatin trial.

    RESULTS: Twenty patients were screened, 14 randomized, and 13 completed the study. The mean age was 10.9 years; 8 patients were on ezetimibe and 7 on apheresis. Mean LDL-C was 481 mg/dl (range: 229 to 742 mg/dl) on placebo and 396 mg/dl (range: 130 to 700 mg/dl) on rosuvastatin, producing a mean 85.4 mg/dl (22.3%) difference (p = 0.005). Efficacy was similar regardless of age or use of ezetimibe or apheresis, and was maintained for 12 weeks. Adverse events were few and not serious. Patients with 2 defective versus 2 negative LDL receptor mutations had mean LDL-C reductions of 23.5% (p = 0.0044) and 14% (p = 0.038), respectively.

    CONCLUSIONS: This first-ever pediatric HoFH statin trial demonstrated safe and effective LDL-C reduction with rosuvastatin 20 mg alone or added to ezetimibe and/or apheresis. The LDL-C response in children and adults was related to underlying genetic mutations. (A Study to Evaluate the Efficacy and Safety of Rosuvastatin in Children and Adolescents With Homozygous Familial Hypercholesterolemia [HYDRA]; NCT02226198).

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/drug therapy*; Hyperlipoproteinemia Type II/genetics
  4. Rahman T, Hamzan NS, Mokhsin A, Rahmat R, Ibrahim ZO, Razali R, et al.
    Lipids Health Dis, 2017 Apr 24;16(1):81.
    PMID: 28438163 DOI: 10.1186/s12944-017-0470-1
    BACKGROUND: Familial hypercholesterolaemia (FH) leads to premature coronary artery diseases (CAD) which pathophysiologically can be measured by inflammation, endothelial activation and oxidative stress status. However, the status of these biomarkers among related unaffected relatives of FH cases and whether FH is an independent predictor of these biomarkers have not been well established. Thus, this study aims to (1) compare the biomarkers of inflammation, endothelial activation and oxidative stress between patients with FH, their related unaffected relatives (RUC) and normolipaemic subjects (NC) (2)determine whether FH is an independent predictor of these biomarkers.

    METHODS: One hundred thirty-one FH patients, 68 RUC and 214 matched NC were recruited. Fasting lipid profile, biomarkers of inflammation (hsCRP), endothelial activation (sICAM-1 and E-selectin) and oxidative stress [oxidized LDL (oxLDL), malondialdehyde (MDA) and F2-isoprostanes (ISP)] were analyzed and independent predictor was determined using binary logistic regression analysis.

    RESULTS: hsCRP was higher in FH and RUC compared to NC (mean ± SD = 1.53 ± 1.24 mg/L and mean ± SD = 2.54 ± 2.30 vs 1.10 ± 0.89 mg/L, p  0.05). FH was an independent predictor for sICAM-1 (p = 0.007), ox-LDL (p 

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood*; Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/physiopathology
  5. Qureshi N, Akyea RK, Dutton B, Humphries SE, Abdul Hamid H, Condon L, et al.
    Heart, 2021 12;107(24):1956-1961.
    PMID: 34521694 DOI: 10.1136/heartjnl-2021-319742
    OBJECTIVE: Familial hypercholesterolaemia (FH) is a common inherited disorder that remains mostly undetected in the general population. Through FH case-finding and direct access to genetic testing in primary care, this intervention study described the genetic and lipid profile of patients found at increased risk of FH and the outcomes in those with positive genetic test results.

    METHODS: In 14 Central England general practices, a novel case-finding tool (Familial Hypercholetserolaemia Case Ascertainment Tool, FAMCAT1) was applied to the electronic health records of 86 219 patients with cholesterol readings (44.5% of total practices' population), identifying 3375 at increased risk of FH. Of these, a cohort of 336 consenting to completing Family History Questionnaire and detailed review of their clinical data, were offered FH genetic testing in primary care.

    RESULTS: Genetic testing was completed by 283 patients, newly identifying 16 with genetically confirmed FH and 10 with variants of unknown significance. All 26 (9%) were recommended for referral and 19 attended specialist assessment. In a further 153 (54%) patients, the test suggested polygenic hypercholesterolaemia who were managed in primary care. Total cholesterol and low-density lipoprotein-cholesterol levels were higher in those patients with FH-causing variants than those with other genetic test results (p=0.010 and p=0.002).

    CONCLUSION: Electronic case-finding and genetic testing in primary care could improve identification of FH; and the better targeting of patients for specialist assessment. A significant proportion of patients identified at risk of FH are likely to have polygenic hypercholesterolaemia. There needs to be a clearer management plan for these individuals in primary care.

    TRIAL REGISTRATION NUMBER: NCT03934320.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/epidemiology*
  6. Pang J, Chan DC, Hu M, Muir LA, Kwok S, Charng MJ, et al.
    J Clin Lipidol, 2019 01 25;13(2):287-300.
    PMID: 30797720 DOI: 10.1016/j.jacl.2019.01.009
    BACKGROUND: There is a lack of information on the health care of familial hypercholesterolemia (FH).

    OBJECTIVE: The objective of this study was to compare the health care of FH in countries of the Asia-Pacific region and Southern Hemisphere.

    METHODS: A series of questionnaires were completed by key opinion leaders from selected specialist centers in 12 countries concerning aspects of the care of FH, including screening, diagnosis, risk assessment, treatment, teaching/training, and research; the United Kingdom (UK) was used as the international benchmark.

    RESULTS: The estimated percentage of patients diagnosed with the condition was low (overall <3%) in all countries, compared with ∼15% in the UK. Underdetection of FH was associated with government expenditure on health care (ϰ = 0.667, P type 9 inhibitors. A deficit of FH registries, training programs, and publications were identified in less economically developed countries. The demonstration of cost-effectiveness for cascade screening, genetic testing, and specialized treatments were significantly associated with the availability of subsidies from the health care system (ϰ = 0.571-0.800, P 

    Matched MeSH terms: Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/economics; Hyperlipoproteinemia Type II/epidemiology*; Hyperlipoproteinemia Type II/therapy
  7. Pang J, Hu M, Lin J, Miida T, Nawawi HM, Park JE, et al.
    BMJ Open, 2017 Oct 25;7(10):e017817.
    PMID: 29074516 DOI: 10.1136/bmjopen-2017-017817
    OBJECTIVE: To determine physicians' knowledge, awareness and preferences regarding the care of familial hypercholesterolaemia (FH) in the Asia-Pacific region.

    SETTING: A formal questionnaire was anonymously completed by physicians from different countries/regions in the Asia-Pacific. The survey sought responses relating to general familiarity, awareness of management guidelines, identification (clinical characteristics and lipid profile), prevalence and inheritance, extent of elevation in risk of cardiovascular disease (CVD) and practice on screening and treatment.

    PARTICIPANTS: Practising community physicians from Australia, Japan, Malaysia, South Korea, Philippines, Hong Kong, China, Vietnam and Taiwan were recruited to complete the questionnaire, with the UK as the international benchmark.

    PRIMARY OUTCOME: An assessment and comparison of the knowledge, awareness and preferences of FH among physicians in 10 different countries/regions.

    RESULTS: 1078 physicians completed the questionnaire from the Asia-Pacific region; only 34% considered themselves to be familiar with FH. 72% correctly described FH and 65% identified the typical lipid profile, with a higher proportion of physicians from Japan and China selecting the correct FH definition and lipid profile compared with those from Vietnam and Philippines. However, less than half of the physician were aware of national or international management guidelines; this was significantly worse than physicians from the UK (35% vs 61%, p<0.001). Knowledge of prevalence (24%), inheritability (41%) and CVD risk (9%) of FH were also suboptimal. The majority of the physicians considered laboratory interpretative commenting as being useful (81%) and statin therapy as an appropriate cholesterol-lowering therapy (89%) for FH management.

    CONCLUSIONS: The study identified important gaps, which are readily addressable, in the awareness and knowledge of FH among physicians in the region. Implementation of country-specific guidelines and extensive work in FH education and awareness programmes are imperative to improve the care of FH in the region.

    Matched MeSH terms: Hyperlipoproteinemia Type II/diagnosis*; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/therapy*
  8. Noor Alicezah Mohd Kasim, Chua Yung An, Hapizah Nawawi
    MyJurnal
    Familial hypercholesterolaemia (FH), the commonest and serious but potentially treatable
    form of inherited dyslipidaemias, is characterised by severely elevated plasma low-density
    lipoprotein-cholesterol (LDL-C) level, which subsequently leads to premature coronary artery
    disease (pCAD). Effectiveness of FH early detection and treatment is supported by the
    outcome of several international cohort studies. Optimal FH management relies on
    prescription of statins either alone or together with other lipid-lowering therapies (LLT).
    Intensive lifestyle intervention is required in parallel with LLT, which should be commenced at
    diagnosis in adults and childhood. Treatment with high intensity statin should be started as
    soon as possible. Combination with ezetimibe and/or bile acid sequestrants is indicated if
    target LDL-C is not achieved. For FH patients in the very-high risk category, if their LDL-C
    targets are not achieved, despite being on maximally tolerated statin dose and ezetimibe,
    proprotein convertase subtilisin/kexin type1 inhibitor (PCSK9i) is recommended. In statin
    intolerance, ezetimibe alone, or in combination with PCSK9i may be considered. Clinical
    evaluation of response to treatment and safety are recommended to be done about 4-6 weeks
    following initiation of treatment. Homozygous FH (HoFH) patients should be treated with
    maximally tolerated intensive LLT and, when available, with lipoprotein apheresis. This review
    highlights the overall management, and optimal treatment combinations in FH in adults and
    children, newer LLT including PCSK9i, microsomal transfer protein inhibitor, allele-specific
    oligonucleotide to ApoB100 and PCSK9 mRNA. Family cascade screening and/or screening
    of high-risk individuals, is the most cost-effective way of identifying FH cases and initiating
    early and adequate LLT.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  9. Nawawi HM, Chua YA, Watts GF
    Curr Opin Cardiol, 2020 05;35(3):226-233.
    PMID: 32097179 DOI: 10.1097/HCO.0000000000000721
    PURPOSE OF REVIEW: With the exception of familial hypercholesterolaemia, the value of genetic testing for managing dyslipidaemias is not established. We review the genetics of major dyslipidaemias in context of clinical practice.

    RECENT FINDINGS: Genetic testing for familial hypercholesterolaemia is valuable to enhance diagnostic precision, cascade testing, risk prediction and the use of new medications. Hypertriglyceridaemia may be caused by rare recessive monogenic, or by polygenic, gene variants; genetic testing may be useful in the former, for which antisense therapy targeting apoC-III has been approved. Familial high-density lipoprotein deficiency is caused by specific genetic mutations, but there is no effective therapy. Familial combined hyperlipidaemia (FCHL) is caused by polygenic variants for which there is no specific gene testing panel. Familial dysbetalipoproteinaemia is less frequent and commonly caused by APOE ε2ε2 homozygosity; as with FCHL, it is responsive to lifestyle modifications and statins or/and fibrates. Elevated lipoprotein(a) is a quantitative genetic trait whose value in risk prediction over-rides genetic testing; treatment relies on RNA therapeutics.

    SUMMARY: Genetic testing is not at present commonly available for managing dyslipidaemias. Rapidly advancing technology may presage wider use, but its worth will require demonstration of cost-effectiveness and a healthcare workforce trained in genomic medicine.

    Matched MeSH terms: Hyperlipoproteinemia Type II/diagnosis*
  10. Nawawi H, Osman NS, Annuar R, Khalid BA, Yusoff K
    Atherosclerosis, 2003 Aug;169(2):283-91.
    PMID: 12921980
    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/drug therapy; Hyperlipoproteinemia Type II/physiopathology
  11. Nafikudin M, Nawawi H, Muid S, Annuar R, Yusoff K, Khalid BAK
    Med J Malaysia, 2003 Dec;58(5):647-52.
    PMID: 15190648
    Ultrasonographic measurements of the intima-media thickness (IMT) of common carotid arteries (CCA) were taken in 50 patients with familial hypercholesterolaemia (FH) and 57 patients with non-familial hypercholesterolemia (NFH). The lipid profile, body mass index (BMI) and waist-hip ratio (WHR) of each patient were recorded. In FH patients, the IMT was significantly higher in overweight and elevated WHR subgroups compared to the normal with significant correlations between BMI and WHR to the IMT. In NFH patients, the IMT was significantly higher in the elevated WHR compared to the normal subgroup but the correlations between either BMI or WHR to IMT were insignificant. These suggest that the environmentally modified anthropometric indices may have an effect on atherosclerosis in genetically determined hypercholesterolaemia in FH patients.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/ultrasonography*
  12. Muthupalaniappen L, Menon RK, Das S
    Saudi Med J, 2012 Feb;33(2):197-200.
    PMID: 22327763
    Myocardial infarction (MI) is known to be common in adults. Interestingly, we report a case of a 15-year-old boy who presented with typical chest pain secondary to myocardial infarct attributable to a combination of familial hyperlipidemia and possible episode of Kawasaki disease in the past. The patient failed treatment and follow-up care, and died 2 years later. Although rare, this case demonstrates that MI should be considered as a diagnosis in adolescents presenting with typical chest pain as early detection, and management is vital for survival.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*
  13. Mohd Nor NS, Al-Khateeb AM, Chua YA, Mohd Kasim NA, Mohd Nawawi H
    BMC Pediatr, 2019 04 11;19(1):106.
    PMID: 30975109 DOI: 10.1186/s12887-019-1474-y
    BACKGROUND: Familial hypercholesterolaemia (FH) is the most common inherited metabolic disease with an autosomal dominant mode of inheritance. It is characterised by raised serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c), leading to premature coronary artery disease. Children with FH are subjected to early and enhanced atherosclerosis, leading to greater risk of coronary events, including premature coronary artery disease. To the best of our knowledge, this is the first report of a pair of monochorionic diamniotic identical twins with a diagnosis of heterozygous FH, resulting from mutations in both LDLR and ABCG8 genes.

    CASE PRESENTATION: This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation.

    CONCLUSION: A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics*
  14. Mohd Kasim NA, Al-Khateeb A, Chua YA, Sanusi AR, Mohd Nawawi H
    Malays J Pathol, 2021 Apr;43(1):87-93.
    PMID: 33903311
    Homozygous familial hypercholesterolaemia (HoFH) is a rare genetic disorder of lipoprotein metabolism mainly due to mutation of the low-density lipoprotein (LDL)-receptor gene (LDLR). It is a life-threatening disease that causes accelerated, multi-vessel atherosclerosis presented in early childhood. Pregnancy in HoFH may pose early coronary morbidity and mortality to both the foetus and mother. The combination of HoFH and pregnancy can be a fatal condition. While statins are very effective in lowering low-density lipoprotein cholesterol (LDL-C) levels, they are generally contraindicated during pregnancy, thus their use during pregnancy is uncommon. On the other hand, lipid apheresis (LA) has turned into an effective treatment to control cholesterol level amid pregnancy. However, the procedure is not widely available in our region. To date, there are scarcely documented case reports of HoFH in pregnancy in which the majority of them underwent LA to keep LDL-C at a low level. We report a rare case of successful pregnancy outcome of HoFH patient treated with lipid-lowering drugs including statin without LA therapy. Apart from that, we also discussed the genetic findings of the proband and all screened family members in which to the best of our knowledge, the first study using the whole-exome sequencing technique to identify the causative gene mutations for familial hypercholesterolaemia among the Malaysian population.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  15. Masaany M, Siti HS, Nurliza I, Mazita A
    Otolaryngol Head Neck Surg, 2008 Jun;138(6):803-4.
    PMID: 18503863 DOI: 10.1016/j.otohns.2008.02.020
    Cholesterol granuloma (CG) is a histologic description of foreign body giant cell formation toward cholesterol crystals. The majority of temporal bone CG is unilateral and most common in the petrous apex. Middle ear CG is usually the result of underlying ear diseases. Primary middle ear CG is very rare. Most reported CG has not been associated with familial hypercholesterolemia (FH). FH, an autosomal dominant disorder, manifests as high levels of serum cholesterol and low density lipoprotein (LDL) cholesterol. We report a rare case of FH and bilateral aggressive primary middle ear CG. This publication has been approved by the IRB, Hospital Alor Setar.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/therapy
  16. Lye SH, Chahil JK, Bagali P, Alex L, Vadivelu J, Ahmad WA, et al.
    PLoS One, 2013;8(4):e60729.
    PMID: 23593297 DOI: 10.1371/journal.pone.0060729
    Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*; Hyperlipoproteinemia Type II/metabolism*; Hyperlipoproteinemia Type II/pathology
  17. Kyi WM, Isa MN, Rashid FA, Osman JM, Mansur MA
    Malays J Med Sci, 2000 Jan;7(1):16-21.
    PMID: 22844210
    Familial defective apolipoprotein B-100 (FDB) is an autosomal dominant genetic disorder associated with hypercholesterolaemia and premature coronary heart disease. FDB is caused by mutations in and around the codon 3500 of the apolipoprotein B (apo B) gene. Apo B R3500Q mutation is the first apo B mutation known to be associated with FDB and it is the most frequently reported apo B mutation in several different populations. The objective of the present study was to determine the association of apo B R3500Q mutation with elevated plasma cholesterol concentration in Kelantanese population in which both hypercholesterolaemia and coronary heart disease are common. Sixty-two Malay subjects with hyperlipidaemia, attending the lipid clinic at Hospital Universiti Sains Malaysia, Kelantan, were selected for this study. The DNA samples were analysed for the presence of apo B R3500Q mutation by polymerase chain reaction-based restriction fragment analysis method using mutagenic primers. This mutation was not detected in the subjects selected for this study. Apo B R3500Q mutation does not appear to be a common cause of hypercholesterolaemia in Kelantanese Malays.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  18. Khoo KL, Van Acker P, Tan H, Deslypere JP
    Med J Malaysia, 2000 Dec;55(4):409-18.
    PMID: 11221151
    A total of 86 unrelated Malaysian patients with familial hypercholesterolaemia (FH) were studied for mutations in their low-density lipoprotein receptor (LDL-R) gene. Amongst them, 23 had a LDL-R gene mutation, while none having an Apolipoprotein B-3500 (Apo B-3500) mutation. Patients with the LDL-R gene defect appeared to have a higher level of low-density lipoprotein cholesterol (LDL-C), an increased incidence of xanthomas and coronary heart disease (CHD), but no relationships were found between the type of LDL-R gene mutations and their lipid levels or clinical signs of CHD. In contrast to Western data, our findings seemed to indicate a predominance of mutations in the ligand binding domain and an absence of Apo B-3500 gene mutation. The latter finding may offer a genetic basis as to why Asian patients with familial hypercholesterolaemia have lower LDL-C levels and less premature CHD than their Western counterparts.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics*
  19. Khoo KL, van Acker P, Defesche JC, Tan H, van de Kerkhof L, Heijnen-van Eijk SJ, et al.
    Clin Genet, 2000 Aug;58(2):98-105.
    PMID: 11005141 DOI: 10.1034/j.1399-0004.2000.580202.x
    The aim of this study was to detect mutations in the genes coding for the low-density lipoprotein receptor and apolipoprotein B in patients of Southeast Asian origin with clinically diagnosed familial hypercholesterolemia (FH) and to relate these findings with the observed lower incidence of coronary heart disease in this part of the world. A total of 86 unrelated patients with FH were selected on clinical grounds, and complete DNA analysis of the low-density lipoprotein (LDL)-receptor and apolipoprotein B (apoB) genes by DGGE and DNA-sequencing was performed. In the majority (73%) of the cohort studied, no mutations could be detected, even after extensive analysis of the LDL-receptor and apoB genes. However, the 22 patients with a mutation had significantly more xanthomas and a higher incidence of coronary heart disease and levels of low-density lipoproteins were also significantly different. There was no correlation between the type of the mutation and lipoprotein levels or clinical signs of atherosclerosis. The fact that the majority of the FH patients studied had no detectable mutation and that this group had a significant milder phenotype, suggests the presence of a third gene in the Southeast Asian population, predominantly leading to a disorder resembling a milder form of FH. A similar, but less frequent, trait has recently been described in a number of European families.
    Matched MeSH terms: Hyperlipoproteinemia Type II/ethnology; Hyperlipoproteinemia Type II/genetics*
  20. Khoo KL, Page MM, Liew YM, Defesche JC, Watts GF
    J Clin Lipidol, 2016 05 13;10(5):1188-94.
    PMID: 27678436 DOI: 10.1016/j.jacl.2016.05.006
    BACKGROUND: Familial hypercholesterolemia (FH) leads to premature coronary artery disease and aortic stenosis, with undertreated severe forms causing death at a young age. Lipoprotein apheresis (LA) is often required for lowering low-density lipoprotein cholesterol levels in severe FH.

    OBJECTIVES: The objective of this study was to present the first experiences with LA in Malaysia, between 2004 and 2014.

    METHODS: We retrospectively collected data from patient records to assess the effectiveness, adverse effects, patient quality of life, and costs associated with an LA service for genetically confirmed homozygous and heterozygous FH.

    RESULTS: We treated 13 women and 2 men aged 6 to 59 years, 10 with homozygous and 5 with heterozygous FH, all on maximally tolerated cholesterol-lowering drug therapy, for a total of 65 patient-years. Acute lowering of low-density lipoprotein cholesterol post apheresis was 56.3 ± 7.2%, with time-averaged mean lowering of 34.9 ± 13.9%. No patients experienced any cardiovascular events during the period of receiving LA. Patients receiving LA experienced few side effects and enjoyed reasonable quality of life, but inability to continue treatment was frequent because of cost.

    CONCLUSION: LA for severe FH can be delivered effectively in the short term in developing nations, but costs are a major barrier to sustaining this mode of treatment for this high-risk group of patients. New drug therapies for FH, such as the proprotein convertase subtilisin/kexin type 9 inhibitors, microsomal triglyceride transfer protein inhibitors, and apolipoprotein-B100 antisense oligonucleotides may allow improved care for these patients, but costs and long-term safety remain as issues to be addressed.

    Matched MeSH terms: Hyperlipoproteinemia Type II/therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links