Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Mohd Kasim NA, Al-Khateeb A, Chua YA, Sanusi AR, Mohd Nawawi H
    Malays J Pathol, 2021 Apr;43(1):87-93.
    PMID: 33903311
    Homozygous familial hypercholesterolaemia (HoFH) is a rare genetic disorder of lipoprotein metabolism mainly due to mutation of the low-density lipoprotein (LDL)-receptor gene (LDLR). It is a life-threatening disease that causes accelerated, multi-vessel atherosclerosis presented in early childhood. Pregnancy in HoFH may pose early coronary morbidity and mortality to both the foetus and mother. The combination of HoFH and pregnancy can be a fatal condition. While statins are very effective in lowering low-density lipoprotein cholesterol (LDL-C) levels, they are generally contraindicated during pregnancy, thus their use during pregnancy is uncommon. On the other hand, lipid apheresis (LA) has turned into an effective treatment to control cholesterol level amid pregnancy. However, the procedure is not widely available in our region. To date, there are scarcely documented case reports of HoFH in pregnancy in which the majority of them underwent LA to keep LDL-C at a low level. We report a rare case of successful pregnancy outcome of HoFH patient treated with lipid-lowering drugs including statin without LA therapy. Apart from that, we also discussed the genetic findings of the proband and all screened family members in which to the best of our knowledge, the first study using the whole-exome sequencing technique to identify the causative gene mutations for familial hypercholesterolaemia among the Malaysian population.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  2. Kyi WM, Isa MN, Rashid FA, Osman JM, Mansur MA
    Malays J Med Sci, 2000 Jan;7(1):16-21.
    PMID: 22844210
    Familial defective apolipoprotein B-100 (FDB) is an autosomal dominant genetic disorder associated with hypercholesterolaemia and premature coronary heart disease. FDB is caused by mutations in and around the codon 3500 of the apolipoprotein B (apo B) gene. Apo B R3500Q mutation is the first apo B mutation known to be associated with FDB and it is the most frequently reported apo B mutation in several different populations. The objective of the present study was to determine the association of apo B R3500Q mutation with elevated plasma cholesterol concentration in Kelantanese population in which both hypercholesterolaemia and coronary heart disease are common. Sixty-two Malay subjects with hyperlipidaemia, attending the lipid clinic at Hospital Universiti Sains Malaysia, Kelantan, were selected for this study. The DNA samples were analysed for the presence of apo B R3500Q mutation by polymerase chain reaction-based restriction fragment analysis method using mutagenic primers. This mutation was not detected in the subjects selected for this study. Apo B R3500Q mutation does not appear to be a common cause of hypercholesterolaemia in Kelantanese Malays.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  3. Muthupalaniappen L, Menon RK, Das S
    Saudi Med J, 2012 Feb;33(2):197-200.
    PMID: 22327763
    Myocardial infarction (MI) is known to be common in adults. Interestingly, we report a case of a 15-year-old boy who presented with typical chest pain secondary to myocardial infarct attributable to a combination of familial hyperlipidemia and possible episode of Kawasaki disease in the past. The patient failed treatment and follow-up care, and died 2 years later. Although rare, this case demonstrates that MI should be considered as a diagnosis in adolescents presenting with typical chest pain as early detection, and management is vital for survival.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*
  4. Pang J, Hu M, Lin J, Miida T, Nawawi HM, Park JE, et al.
    BMJ Open, 2017 Oct 25;7(10):e017817.
    PMID: 29074516 DOI: 10.1136/bmjopen-2017-017817
    OBJECTIVE: To determine physicians' knowledge, awareness and preferences regarding the care of familial hypercholesterolaemia (FH) in the Asia-Pacific region.

    SETTING: A formal questionnaire was anonymously completed by physicians from different countries/regions in the Asia-Pacific. The survey sought responses relating to general familiarity, awareness of management guidelines, identification (clinical characteristics and lipid profile), prevalence and inheritance, extent of elevation in risk of cardiovascular disease (CVD) and practice on screening and treatment.

    PARTICIPANTS: Practising community physicians from Australia, Japan, Malaysia, South Korea, Philippines, Hong Kong, China, Vietnam and Taiwan were recruited to complete the questionnaire, with the UK as the international benchmark.

    PRIMARY OUTCOME: An assessment and comparison of the knowledge, awareness and preferences of FH among physicians in 10 different countries/regions.

    RESULTS: 1078 physicians completed the questionnaire from the Asia-Pacific region; only 34% considered themselves to be familiar with FH. 72% correctly described FH and 65% identified the typical lipid profile, with a higher proportion of physicians from Japan and China selecting the correct FH definition and lipid profile compared with those from Vietnam and Philippines. However, less than half of the physician were aware of national or international management guidelines; this was significantly worse than physicians from the UK (35% vs 61%, p<0.001). Knowledge of prevalence (24%), inheritability (41%) and CVD risk (9%) of FH were also suboptimal. The majority of the physicians considered laboratory interpretative commenting as being useful (81%) and statin therapy as an appropriate cholesterol-lowering therapy (89%) for FH management.

    CONCLUSIONS: The study identified important gaps, which are readily addressable, in the awareness and knowledge of FH among physicians in the region. Implementation of country-specific guidelines and extensive work in FH education and awareness programmes are imperative to improve the care of FH in the region.

    Matched MeSH terms: Hyperlipoproteinemia Type II/diagnosis*; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/therapy*
  5. Al-Khateeb A, Zahri MK, Mohamed MS, Sasongko TH, Ibrahim S, Yusof Z, et al.
    BMC Med Genet, 2011;12:40.
    PMID: 21418584 DOI: 10.1186/1471-2350-12-40
    Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/genetics*; Hyperlipoproteinemia Type II/epidemiology
  6. Masaany M, Siti HS, Nurliza I, Mazita A
    Otolaryngol Head Neck Surg, 2008 Jun;138(6):803-4.
    PMID: 18503863 DOI: 10.1016/j.otohns.2008.02.020
    Cholesterol granuloma (CG) is a histologic description of foreign body giant cell formation toward cholesterol crystals. The majority of temporal bone CG is unilateral and most common in the petrous apex. Middle ear CG is usually the result of underlying ear diseases. Primary middle ear CG is very rare. Most reported CG has not been associated with familial hypercholesterolemia (FH). FH, an autosomal dominant disorder, manifests as high levels of serum cholesterol and low density lipoprotein (LDL) cholesterol. We report a rare case of FH and bilateral aggressive primary middle ear CG. This publication has been approved by the IRB, Hospital Alor Setar.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/therapy
  7. Qureshi N, Akyea RK, Dutton B, Humphries SE, Abdul Hamid H, Condon L, et al.
    Heart, 2021 12;107(24):1956-1961.
    PMID: 34521694 DOI: 10.1136/heartjnl-2021-319742
    OBJECTIVE: Familial hypercholesterolaemia (FH) is a common inherited disorder that remains mostly undetected in the general population. Through FH case-finding and direct access to genetic testing in primary care, this intervention study described the genetic and lipid profile of patients found at increased risk of FH and the outcomes in those with positive genetic test results.

    METHODS: In 14 Central England general practices, a novel case-finding tool (Familial Hypercholetserolaemia Case Ascertainment Tool, FAMCAT1) was applied to the electronic health records of 86 219 patients with cholesterol readings (44.5% of total practices' population), identifying 3375 at increased risk of FH. Of these, a cohort of 336 consenting to completing Family History Questionnaire and detailed review of their clinical data, were offered FH genetic testing in primary care.

    RESULTS: Genetic testing was completed by 283 patients, newly identifying 16 with genetically confirmed FH and 10 with variants of unknown significance. All 26 (9%) were recommended for referral and 19 attended specialist assessment. In a further 153 (54%) patients, the test suggested polygenic hypercholesterolaemia who were managed in primary care. Total cholesterol and low-density lipoprotein-cholesterol levels were higher in those patients with FH-causing variants than those with other genetic test results (p=0.010 and p=0.002).

    CONCLUSION: Electronic case-finding and genetic testing in primary care could improve identification of FH; and the better targeting of patients for specialist assessment. A significant proportion of patients identified at risk of FH are likely to have polygenic hypercholesterolaemia. There needs to be a clearer management plan for these individuals in primary care.

    TRIAL REGISTRATION NUMBER: NCT03934320.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/epidemiology*
  8. Pang J, Chan DC, Hu M, Muir LA, Kwok S, Charng MJ, et al.
    J Clin Lipidol, 2019 01 25;13(2):287-300.
    PMID: 30797720 DOI: 10.1016/j.jacl.2019.01.009
    BACKGROUND: There is a lack of information on the health care of familial hypercholesterolemia (FH).

    OBJECTIVE: The objective of this study was to compare the health care of FH in countries of the Asia-Pacific region and Southern Hemisphere.

    METHODS: A series of questionnaires were completed by key opinion leaders from selected specialist centers in 12 countries concerning aspects of the care of FH, including screening, diagnosis, risk assessment, treatment, teaching/training, and research; the United Kingdom (UK) was used as the international benchmark.

    RESULTS: The estimated percentage of patients diagnosed with the condition was low (overall <3%) in all countries, compared with ∼15% in the UK. Underdetection of FH was associated with government expenditure on health care (ϰ = 0.667, P type 9 inhibitors. A deficit of FH registries, training programs, and publications were identified in less economically developed countries. The demonstration of cost-effectiveness for cascade screening, genetic testing, and specialized treatments were significantly associated with the availability of subsidies from the health care system (ϰ = 0.571-0.800, P 

    Matched MeSH terms: Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/economics; Hyperlipoproteinemia Type II/epidemiology*; Hyperlipoproteinemia Type II/therapy
  9. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics
  10. Abdul-Razak S, Rahmat R, Mohd Kasim A, Rahman TA, Muid S, Nasir NM, et al.
    BMC Cardiovasc Disord, 2017 Oct 16;17(1):264.
    PMID: 29037163 DOI: 10.1186/s12872-017-0694-z
    BACKGROUND: Familial hypercholesterolaemia (FH) is a genetic disorder with a high risk of developing premature coronary artery disease that should be diagnosed as early as possible. Several clinical diagnostic criteria for FH are available, with the Dutch Lipid Clinic Criteria (DLCC) being widely used. Information regarding diagnostic performances of the other criteria against the DLCC is scarce. We aimed to examine the diagnostic performance of the Simon-Broom (SB) Register criteria, the US Make Early Diagnosis to Prevent Early Deaths (US MEDPED) and the Japanese FH Management Criteria (JFHMC) compared to the DLCC.

    METHODS: Seven hundered fifty five individuals from specialist clinics and community health screenings with LDL-c level ≥ 4.0 mmol/L were selected and diagnosed as FH using the DLCC, the SB Register criteria, the US MEDPED and the JFHMC. The sensitivity, specificity, efficiency, positive and negative predictive values of individuals screened with the SB register criteria, US MEDPED and JFHMC were assessed against the DLCC.

    RESULTS: We found the SB register criteria identified more individuals with FH compared to the US MEDPED and the JFHMC (212 vs. 105 vs. 195; p 

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood*; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/genetics*
  11. Alex L, Chahil JK, Lye SH, Bagali P, Ler LW
    J Hum Genet, 2012 Jun;57(6):358-62.
    PMID: 22534770 DOI: 10.1038/jhg.2012.34
    Hypercholesterolemia is caused by different interactions of lifestyle and genetic determinants. At the genetic level, it can be attributed to the interactions of multiple polymorphisms, or as in the example of familial hypercholesterolemia (FH), it can be the result of a single mutation. A large number of genetic markers, mostly single nucleotide polymorphisms (SNP) or mutations in three genes, implicated in autosomal dominant hypercholesterolemia (ADH), viz APOB (apolipoprotein B), LDLR (low density lipoprotein receptor) and PCSK9 (proprotein convertase subtilisin/kexin type-9), have been identified and characterized. However, such studies have been insufficiently undertaken specifically in Malaysia and Southeast Asia in general. The main objective of this study was to identify ADH variants, specifically ADH-causing mutations and hypercholesterolemia-associated polymorphisms in multiethnic Malaysian population. We aimed to evaluate published SNPs in ADH causing genes, in this population and to report any unusual trends. We examined a large number of selected SNPs from previous studies of APOB, LDLR, PCSK9 and other genes, in clinically diagnosed ADH patients (n=141) and healthy control subjects (n=111). Selection of SNPs was initiated by searching within genes reported to be associated with ADH from known databases. The important finding was 137 mono-allelic markers (44.1%) and 173 polymorphic markers (55.8%) in both subject groups. By comparing to publicly available data, out of the 137 mono-allelic markers, 23 markers showed significant differences in allele frequency among Malaysians, European Whites, Han Chinese, Yoruba and Gujarati Indians. Our data can serve as reference for others in related fields of study during the planning of their experiments.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*
  12. Hagger MS, Hardcastle SJ, Hu M, Kwok S, Lin J, Nawawi HM, et al.
    Atherosclerosis, 2018 10;277:493-501.
    PMID: 30270090 DOI: 10.1016/j.atherosclerosis.2018.06.010
    BACKGROUND AND AIMS: Although familial hypercholesterolemia (FH) can be effectively managed using cholesterol-lowering medication, patients often fall short of complete treatment adherence. Identifying the psychological factors associated with self-regulation of FH medication is important to inform interventions to maximize adherence. The aim of the present study was to test an integrated psychological model in predicting FH patients' intentions to take medication.

    METHODS: FH patients attending clinics in seven countries were invited to participate in a cross-sectional survey study. Consenting patients (N = 551) completed self-report measures of generalized beliefs about medication overuse and harms, beliefs in treatment effectiveness, specific beliefs about taking medication (attitudes, subjective norms, perceived behavioral control), and intentions to take medication. Participants also completed measures of demographic variables (age, gender, education level, income, cardiovascular disease status). Data were analysed using path analysis controlling for country and demographic variables.

    RESULTS: Attitudes (β = .331, p<0.001), subjective norms (β = .121, p=0.009), and beliefs about medication overuse (β = -.160, p<0.001) were significant predictors of intentions to take medication. Treatment beliefs predicted intentions indirectly (β = .088, p<0.001) through attitudes and subjective norms. There was also an indirect effect of beliefs about medication overuse on intentions (β = -.045, p=0.056), but the effect was small compared with the direct effect.

    CONCLUSIONS: The findings indicate the importance among FH patients of specific beliefs about taking medication and generalized beliefs about medication overuse and treatment in predicting medication intentions. When managing patients, clinicians should emphasize the efficacy of taking cholesterol-lowering drugs and the importance of treatment outcomes, and allay concerns about medication overuse.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/drug therapy*; Hyperlipoproteinemia Type II/psychology
  13. Stein EA, Dann EJ, Wiegman A, Skovby F, Gaudet D, Sokal E, et al.
    J Am Coll Cardiol, 2017 Aug 29;70(9):1162-1170.
    PMID: 28838366 DOI: 10.1016/j.jacc.2017.06.058
    BACKGROUND: Homozygous familial hypercholesterolemia (HoFH), a rare genetic disorder, is characterized by extremely elevated levels of low-density lipoprotein cholesterol (LDL-C) and accelerated atherosclerotic cardiovascular disease. Statin treatment starts at diagnosis, but no statin has been formally evaluated in, or approved for, HoFH children.

    OBJECTIVES: The authors sought to assess the LDL-C efficacy of rosuvastatin versus placebo in HoFH children, and the relationship with underlying genetic mutations.

    METHODS: This was a randomized, double-blind, 12-week, crossover study of rosuvastatin 20 mg versus placebo, followed by 12 weeks of open-label rosuvastatin. Patients discontinued all lipid-lowering treatment except ezetimibe and/or apheresis. Clinical and laboratory assessments were performed every 6 weeks. The relationship between LDL-C response and genetic mutations was assessed by adding children and adults from a prior HoFH rosuvastatin trial.

    RESULTS: Twenty patients were screened, 14 randomized, and 13 completed the study. The mean age was 10.9 years; 8 patients were on ezetimibe and 7 on apheresis. Mean LDL-C was 481 mg/dl (range: 229 to 742 mg/dl) on placebo and 396 mg/dl (range: 130 to 700 mg/dl) on rosuvastatin, producing a mean 85.4 mg/dl (22.3%) difference (p = 0.005). Efficacy was similar regardless of age or use of ezetimibe or apheresis, and was maintained for 12 weeks. Adverse events were few and not serious. Patients with 2 defective versus 2 negative LDL receptor mutations had mean LDL-C reductions of 23.5% (p = 0.0044) and 14% (p = 0.038), respectively.

    CONCLUSIONS: This first-ever pediatric HoFH statin trial demonstrated safe and effective LDL-C reduction with rosuvastatin 20 mg alone or added to ezetimibe and/or apheresis. The LDL-C response in children and adults was related to underlying genetic mutations. (A Study to Evaluate the Efficacy and Safety of Rosuvastatin in Children and Adolescents With Homozygous Familial Hypercholesterolemia [HYDRA]; NCT02226198).

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/drug therapy*; Hyperlipoproteinemia Type II/genetics
  14. Rahman T, Hamzan NS, Mokhsin A, Rahmat R, Ibrahim ZO, Razali R, et al.
    Lipids Health Dis, 2017 Apr 24;16(1):81.
    PMID: 28438163 DOI: 10.1186/s12944-017-0470-1
    BACKGROUND: Familial hypercholesterolaemia (FH) leads to premature coronary artery diseases (CAD) which pathophysiologically can be measured by inflammation, endothelial activation and oxidative stress status. However, the status of these biomarkers among related unaffected relatives of FH cases and whether FH is an independent predictor of these biomarkers have not been well established. Thus, this study aims to (1) compare the biomarkers of inflammation, endothelial activation and oxidative stress between patients with FH, their related unaffected relatives (RUC) and normolipaemic subjects (NC) (2)determine whether FH is an independent predictor of these biomarkers.

    METHODS: One hundred thirty-one FH patients, 68 RUC and 214 matched NC were recruited. Fasting lipid profile, biomarkers of inflammation (hsCRP), endothelial activation (sICAM-1 and E-selectin) and oxidative stress [oxidized LDL (oxLDL), malondialdehyde (MDA) and F2-isoprostanes (ISP)] were analyzed and independent predictor was determined using binary logistic regression analysis.

    RESULTS: hsCRP was higher in FH and RUC compared to NC (mean ± SD = 1.53 ± 1.24 mg/L and mean ± SD = 2.54 ± 2.30 vs 1.10 ± 0.89 mg/L, p  0.05). FH was an independent predictor for sICAM-1 (p = 0.007), ox-LDL (p 

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood*; Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/physiopathology
  15. Chua YA, Razman AZ, Ramli AS, Mohd Kasim NA, Nawawi H
    J Atheroscler Thromb, 2021 Oct 01;28(10):1095-1107.
    PMID: 33455995 DOI: 10.5551/jat.57026
    AIM: Familial hypercholesterolaemia (FH) is the most common autosomal dominant lipid disorder, leading to severe hypercholesterolaemia. Early detection and treatment with lipid-lowering medications may reduce the risk of premature coronary artery disease in FH patients. However, there is scarcity of data on FH prevalence, detection rate, treatment and control with lipid-lowering therapy in the Malaysian community.

    METHODS: Community participants (n=5130) were recruited from all states in Malaysia. Blood samples were collected for lipid profiles and glucose analyses. Personal and family medical histories were collected by means of assisted questionnaire. Physical examination for tendon xanthomata and premature corneal arcus were conducted on-site. FH were clinically screened using Dutch Lipid Clinic Network Criteria.

    RESULTS: Out of 5130 recruited community participants, 55 patients were clinically categorised as potential (Definite and Probable) FH, making the prevalence FH among the community as 1:100. Based on current total population of Malaysia (32 million), the estimated number of FH patients in Malaysia is 320,000, while the detection rates are estimated as 0.5%. Lipid-lowering medications were prescribed to 54.5% and 30.5% of potential and possible FH patients, respectively, but none of them achieved the therapeutic LDL-c target.

    CONCLUSION: Clinically diagnosed FH prevalence in Malaysian population is much higher than most of the populations in the world. At community level, FH patients are clinically under-detected, with majority of them not achieving target LDL-c level for high-risk patients. Therefore, public health measures are warranted for early detection and treatment, to enhance opportunities for premature CAD prevention.

    Matched MeSH terms: Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/epidemiology*; Hyperlipoproteinemia Type II/therapy
  16. Alhabib KF, Al-Rasadi K, Almigbal TH, Batais MA, Al-Zakwani I, Al-Allaf FA, et al.
    PLoS One, 2021;16(6):e0251560.
    PMID: 34086694 DOI: 10.1371/journal.pone.0251560
    BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is a common autosomal dominant disorder that can result in premature atherosclerotic cardiovascular disease (ASCVD). Limited data are available worldwide about the prevalence and management of FH. Here, we aimed to estimate the prevalence and management of patients with FH in five Arabian Gulf countries (Saudi Arabia, Oman, United Arab Emirates, Kuwait, and Bahrain).

    METHODS: The multicentre, multinational Gulf FH registry included adults (≥18 years old) recruited from outpatient clinics in 14 tertiary-care centres across five Arabian Gulf countries over the last five years. The Gulf FH registry had four phases: 1- screening, 2- classification based on the Dutch Lipid Clinic Network, 3- genetic testing, and 4- follow-up.

    RESULTS: Among 34,366 screened patient records, 3713 patients had suspected FH (mean age: 49±15 years; 52% women) and 306 patients had definite or probable FH. Thus, the estimated FH prevalence was 0.9% (1:112). Treatments included high-intensity statin therapy (34%), ezetimibe (10%), and proprotein convertase subtilisin/kexin type 9 inhibitors (0.4%). Targets for low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol were achieved by 12% and 30%, respectively, of patients at high ASCVD risk, and by 3% and 6%, respectively, of patients at very high ASCVD risk (p <0.001; for both comparisons).

    CONCLUSIONS: This snap-shot study was the first to show the high estimated prevalence of FH in the Arabian Gulf region (about 3-fold the estimated prevalence worldwide), and is a "call-to-action" for further confirmation in future population studies. The small proportions of patients that achieved target LDL-C values implied that health care policies need to implement nation-wide screening, raise FH awareness, and improve management strategies for FH.

    Matched MeSH terms: Hyperlipoproteinemia Type II/drug therapy; Hyperlipoproteinemia Type II/metabolism; Hyperlipoproteinemia Type II/epidemiology*
  17. Noor Alicezah Mohd Kasim, Chua Yung An, Hapizah Nawawi
    MyJurnal
    Familial hypercholesterolaemia (FH), the commonest and serious but potentially treatable
    form of inherited dyslipidaemias, is characterised by severely elevated plasma low-density
    lipoprotein-cholesterol (LDL-C) level, which subsequently leads to premature coronary artery
    disease (pCAD). Effectiveness of FH early detection and treatment is supported by the
    outcome of several international cohort studies. Optimal FH management relies on
    prescription of statins either alone or together with other lipid-lowering therapies (LLT).
    Intensive lifestyle intervention is required in parallel with LLT, which should be commenced at
    diagnosis in adults and childhood. Treatment with high intensity statin should be started as
    soon as possible. Combination with ezetimibe and/or bile acid sequestrants is indicated if
    target LDL-C is not achieved. For FH patients in the very-high risk category, if their LDL-C
    targets are not achieved, despite being on maximally tolerated statin dose and ezetimibe,
    proprotein convertase subtilisin/kexin type1 inhibitor (PCSK9i) is recommended. In statin
    intolerance, ezetimibe alone, or in combination with PCSK9i may be considered. Clinical
    evaluation of response to treatment and safety are recommended to be done about 4-6 weeks
    following initiation of treatment. Homozygous FH (HoFH) patients should be treated with
    maximally tolerated intensive LLT and, when available, with lipoprotein apheresis. This review
    highlights the overall management, and optimal treatment combinations in FH in adults and
    children, newer LLT including PCSK9i, microsomal transfer protein inhibitor, allele-specific
    oligonucleotide to ApoB100 and PCSK9 mRNA. Family cascade screening and/or screening
    of high-risk individuals, is the most cost-effective way of identifying FH cases and initiating
    early and adequate LLT.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  18. Khoo KL, Van Acker P, Tan H, Deslypere JP
    Med J Malaysia, 2000 Dec;55(4):409-18.
    PMID: 11221151
    A total of 86 unrelated Malaysian patients with familial hypercholesterolaemia (FH) were studied for mutations in their low-density lipoprotein receptor (LDL-R) gene. Amongst them, 23 had a LDL-R gene mutation, while none having an Apolipoprotein B-3500 (Apo B-3500) mutation. Patients with the LDL-R gene defect appeared to have a higher level of low-density lipoprotein cholesterol (LDL-C), an increased incidence of xanthomas and coronary heart disease (CHD), but no relationships were found between the type of LDL-R gene mutations and their lipid levels or clinical signs of CHD. In contrast to Western data, our findings seemed to indicate a predominance of mutations in the ligand binding domain and an absence of Apo B-3500 gene mutation. The latter finding may offer a genetic basis as to why Asian patients with familial hypercholesterolaemia have lower LDL-C levels and less premature CHD than their Western counterparts.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics*
  19. Lye SH, Chahil JK, Bagali P, Alex L, Vadivelu J, Ahmad WA, et al.
    PLoS One, 2013;8(4):e60729.
    PMID: 23593297 DOI: 10.1371/journal.pone.0060729
    Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*; Hyperlipoproteinemia Type II/metabolism*; Hyperlipoproteinemia Type II/pathology
  20. Al-Khateeb, A, Al-Talib, H
    JUMMEC, 2016;19(2):1-11.
    MyJurnal
    Background:
    Familial hypercholesterolaemia (FH) is one of the most frequent inherited metabolic disorders that can lead
    to a risk of premature cardiovascular disease. Publications on FH are mainly from western patients as there is
    little research on Asians, including Malaysians. The aim of this review is to provide an up-to- date information
    on Malaysian studies on FH genotyping and its relation to the phenotype of the affected patients.
    Method:
    A search was conducted for data from online databases on FH in Malaysia.
    Results:
    The mutation spectrum for FH among Malaysian patients was extremely broad. The gene variants were located
    mainly in the low-density lipoprotein receptor (LDLR) and apolipoprotein B-100 (APOB-100) genes rather than
    in the proprotein convertase subtilisin kexin type 9 (PCSK9) gene. The exon 9 and 14 were the hotspots in the
    LDLR gene. The most frequent mutation was p.Cys255Ser, at 12.5%, followed by p.Arg471Gly, at 11%, and the
    most common single nucleotide polymorphism (SNP) was c.1060+7 T>C at 11.7%. The LDLR gene variants were
    more common compared to the APOB-100 gene variants, while variants in the PCSK9 gene were very few.
    Phenotype-genotype associations were identified. Subjects with LDLR and APOB-100 genes mutations had a
    higher frequency of cardiovascular disease, a family history of hyperlipidaemia and tendon xanthoma and a
    higher low-density lipoprotein cholesterol (LDL-C) level than non-carriers.
    Conclusion:
    Research on Malaysian familial hypercholesterolaemic patients by individual groups is encouraging. However,
    more extensive molecular studies on FH on a national scale, with a screening of the disease-causing mutations
    together with a comprehensive genotype-phenotype association study, can lead to a better outcome for
    patients with the disease.
    Matched MeSH terms: Hyperlipoproteinemia Type II
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links