Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Yasin SM, Ibrahim S, Johan MR
    ScientificWorldJournal, 2014;2014:547076.
    PMID: 25133244 DOI: 10.1155/2014/547076
    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
    Matched MeSH terms: Ions/chemistry
  2. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Juahir H, Fakharian K
    ScientificWorldJournal, 2014;2014:419058.
    PMID: 24523640 DOI: 10.1155/2014/419058
    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na(+)/Cl(-), Mg(2+)/Ca(2+), and Cl(-)/HCO3 (-) ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area.
    Matched MeSH terms: Ions/chemistry
  3. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Ions/chemistry
  4. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
    Matched MeSH terms: Ions/chemistry
  5. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Ions/chemistry*; Solutions/chemistry
  6. Chung PY, Toh YS
    Pathog Dis, 2014 Apr;70(3):231-9.
    PMID: 24453168 DOI: 10.1111/2049-632X.12141
    Staphylococcus aureus is a Gram-positive pathogen that causes potentially life-threatening nosocomial- and community-acquired infections, such as osteomyelitis and endocarditis. Staphylococcus aureus has the ability to form multicellular, surface-adherent communities called biofilms, which enables it to survive in various sources of stress, including antibiotics, nutrient limitations, heat shock, and immune responses. Biofilm-forming capacity is now recognized as an important virulence determinant in the development of staphylococcal device-related infections. In light of the projected increase in the numbers of elderly patients who will require semi-permanent indwelling medical devices such as artificial knees and hips, we can anticipate an expanded need for new agents and treatment options to manage biofilm-associated infections in an expanding at-risk population. With better understanding of staphylococcal biofilm formation and growth, novel strategies that target biofilm-associated infections caused by S. aureus have recently been described and seem promising as future anti-biofilm therapies.
    Matched MeSH terms: Ions/chemistry
  7. Johari IS, Yusof NA, Haron MJ, Nor SM
    Molecules, 2013 Jul 18;18(7):8461-72.
    PMID: 23873385 DOI: 10.3390/molecules18078461
    Poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre (peh-g-opefb) was successfully prepared by heating poly(methyl acrylate)-grafted opefb (pma-g-opefb) at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v) in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm⁻¹, with amide carbonyl peaks at 1729 cm⁻¹ and 1643 cm⁻¹. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g-1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo-second-order kinetic model, with a constant rate of 7.02 × 10⁻⁴ g mg⁻¹ min⁻¹ at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures.
    Matched MeSH terms: Ions/chemistry*
  8. Eko Sukohidayat NH, Zarei M, Baharin BS, Manap MY
    Molecules, 2018 Jul 20;23(7).
    PMID: 30037038 DOI: 10.3390/molecules23071800
    Purification of lipase produced by L. mesenteroides subsp. mesenteroides ATCC 8293 was conducted for the first time using a novel aqueous two-phase system (ATPS) composed of Triton X-100 and maltitol. The partitioning of lipase was optimized according to several parameters including pH, temperature, and crude load. Results showed that lipase preferentially migrated to the Triton X-100 rich phase and optimum lipase partitioning was achieved in ATPS at TLL of 46.4% and crude load of 20% at 30 °C and pH 8, resulting in high lipase purification factor of 17.28 and yield of 94.7%. The purified lipase showed a prominent band on SDS-PAGE with an estimated molecular weight of 50 kDa. The lipase was stable at the temperature range of 30⁻60 °C and pH range of 6⁻11, however, it revealed its optimum activity at the temperature of 37 °C and pH 8. Moreover, lipase exhibited enhanced activity in the presence of non-ionic surfactants with increased activity up to 40%. Furthermore, results exhibited that metals ions such as Na⁺, Mg2+, K⁺ and Ca2+ stimulated lipase activity. This study demonstrated that this novel system could be potentially used as an alternative to traditional ATPS for the purification and recovery of enzymes since the purified lipase still possesses good process characteristics after undergoing the purification process.
    Matched MeSH terms: Ions/chemistry
  9. Kamaruddin NAL, Taha MF, Wilfred CD
    Molecules, 2023 Jan 13;28(2).
    PMID: 36677888 DOI: 10.3390/molecules28020830
    The main objectives of this study are to synthesize a new solid-supported ionic liquid (SSIL) that has a covalent bond between the solid support, i.e., activated silica gel, with thiosalicylate-based ionic liquid and to evaluate the performance of this new SSIL as an extractant, labelled as Si-TS-SSIL, and to remove Pb(II) ions from an aqueous solution. In this study, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium thiosalicylate ([MTMSPI][TS]) ionic liquid was synthesized and the formation of [MTMSPI][TS] was confirmed through structural analysis using NMR, FTIR, IC, TGA, and Karl Fischer Titration. The [MTMSPI][TS] ionic liquid was then chemically immobilized on activated silica gel to produce a new thiosalicylate-based solid-supported ionic liquid (Si-TS-SSIL). The formation of these covalent bonds on Si-TS-SSIL was confirmed by solid-state NMR analysis. Meanwhile, BET analysis was performed to study the surface area of the activated silica gel and the prepared Si-TS-SSIL (before and after washing with solvent) with the purpose to show that all physically immobilized [MTMSPI][TS] has been washed off from Si-TS-SSIL, leaving only chemically immobilized [MTMSPI][TS] on Si-TS-SSIL before proceeding with removal study. The removal study of Pb(II) ions from an aqueous solution was carried out using Si-TS-SSIL as an extractant, whereby the amount of Pb(II) ions removed was determined by AAS. In this removal study, the experiments were carried out at a fixed agitation speed (400 rpm) and fixed amount of Si-TS-SSIL (0.25 g), with different contact times ranging from 2 to 250 min at room temperature. The maximum removal capacity was found to be 8.37 mg/g. The kinetics study was well fitted with the pseudo-second order model. Meanwhile, for the isotherm study, the removal process of Pb(II) ions was well described by the Freundlich isotherm model, as this model exhibited a higher correlation coefficient (R2), i.e., 0.99, as compared to the Langmuir isotherm model.
    Matched MeSH terms: Ions/chemistry
  10. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Ions/chemistry
  11. Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Omar R, Elgharbawy AA
    Mar Drugs, 2020 Feb 12;18(2).
    PMID: 32059424 DOI: 10.3390/md18020108
    One of the essential fatty acids with therapeutic impacts on human health is known to be omega-3 polyunsaturated fatty acids (PUFA). More lately, ionic liquids (ILs) have received significant attention among scientists in overcoming the disadvantages of traditional solvents in biomass lipid extraction. However, the large pool of cations and anions possibly accessible will lead to a growing number of innovatively synthesized ILs. Nevertheless, the exhaustive measurement of all these systems is economically impractical. The conductive screening model for real solvents (COSMO-RS) is considered a precious approach with the availability of a few models to predict the characteristics of ILs. This work introduces the estimate of capacity values at infinite dilution for a range of ILs using COSMO-RS software as part of solid-liquid extraction. This favorable outcome presented that the capacity values of the IL molecules are extremely dependent on both anions and cations. Among the 352 combinations of cation/anion tested, short alkyl chain cations coupled with inorganic anions were found to be most efficient and therefore superior in the extraction method. Sulphate-, chloride-, and bromide-based ILs were found to have higher extraction capacities in contrast with the remainders, while propanoate revealed an extraordinary capacity when combined with ethyl-based cations. Eventually, the predicted results from COSMO-RS were validated through the experimentally calculated extraction yield of alpha-linolenic acid (ALA) compound from Nannochloropsis sp. microalgae. Three selected ILs namely [EMIM][Cl], [TMAm][Cl], and [EMPyrro][Br] were selected from COSMO-RS for empirical extraction purpose and the validation results pinpointed the good prediction capability of COSMO-RS.
    Matched MeSH terms: Anions/chemistry; Cations/chemistry; Ions/chemistry
  12. Nosrati S, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Sep 15;192(3):1283-90.
    PMID: 21752542 DOI: 10.1016/j.jhazmat.2011.06.037
    This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
    Matched MeSH terms: Ions/chemistry*
  13. Kang OL, Ramli N, Said M, Ahmad M, Yasir SM, Ariff A
    J Environ Sci (China), 2011;23(6):918-22.
    PMID: 22066214
    The Cr(III) sorption experiments onto Kappaphycus alvarezii waste biomass were conducted at different pH values (2-6) under the conditions of initial metal concentration of 10-50 mg/L and the chemical compositions of Cr-Cu and Cr-Cd. The Cr(III) sorption capacities were slightly dependent on pH, and the maximum sorption capacity was 0.86 mg/g at pH 3. The sorption capacities increased with increase in the initial metal concentration, whereas it was suppressed by the presence of Cu(II) and Cd(III) in the solution. The Cr(III) sorption equilibrium was evaluated using Langmuir, Freundlich and BET isotherms. The sorption mechanisms were characterised using scanning electron microscopy and Fourier transform infrared spectroscopy. The main mechanisms were ion exchange coupled with a complexation mechanism. Kappaphycus alvarezii waste biomass represents a potential for Cr(III) ion removal from aqueous solution.
    Matched MeSH terms: Ions/chemistry*
  14. Ruslan R, Abd Rahman RN, Leow TC, Ali MS, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(1):943-60.
    PMID: 22312296 DOI: 10.3390/ijms13010943
    Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The T(m) for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher T(m) as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.
    Matched MeSH terms: Ions/chemistry
  15. Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM
    Int J Mol Sci, 2019 Jul 09;20(13).
    PMID: 31323971 DOI: 10.3390/ijms20133369
    Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.
    Matched MeSH terms: Ions/chemistry
  16. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA, Jume BH
    Int J Biol Macromol, 2018 Sep;116:255-263.
    PMID: 29746971 DOI: 10.1016/j.ijbiomac.2018.05.031
    In this study, the Cu(II) and Cd(II) ions removal behavior of crosslinked chitosan beads grafted poly(methacrylamide) (abbreviated as crosslinked chitosan-g-PMAm) from single metal ion solutions was investigated. The modified chitosan beads presented a remarkable improvement in acid resistance. The batch experiments demonstrated that pH of solution played a significant role in adsorption. It was found that the adsorption of Cu(II) and Cd(II) were optimum at pH 4 and pH 5, respectively. The maximum adsorption capacities for Cu(II) and Cd(II) based on Langmuir equation were 140.9 mg g-1 and 178.6 mg g-1, respectively. Pseudo-second order gave a better fit for adsorption data with respect to linearity coefficients than pseudo-first order suggesting that chemisorption or electron transfer is the dominant mechanism of the metal ions onto crosslinked chitosan-g-PMAm. In addition, X-ray photoelectron spectroscopy (XPS) investigations revealed that adsorption of both metal ions took place on the surfaces of crosslinked chitosan-g-PMAm by chelation through CNH2, CO and CO groups. Overall, the modified chitosan has proved a promising adsorbent for removal of metal ions.
    Matched MeSH terms: Ions/chemistry*
  17. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Ions/chemistry*
  18. Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2018 Feb;107(Pt A):891-897.
    PMID: 28935540 DOI: 10.1016/j.ijbiomac.2017.09.061
    Crosslinked chitosan beads were grafted with N-vinyl-2-pyrrolidone (NVP) using ammonium persulfate (APS) as free radical initiator. Important variables on graft copolymerization such as temperature, reaction time, concentration of initiator and concentration of monomer were optimized. The results revealed optimum conditions for maximum grafting of NVP on 1g crosslinked chitosan as follows: reaction temperature, 60°C; reaction time, 2h and concentrations of APS and NVP of 2.63×10-1M and 26.99×10-1M, respectively. The modified chitosan beads were characterized by FTIR spectroscopy, 13C NMR, SEM and BET to provide evidence of successful crosslinking and grafting reactions. The resulting material (cts(x)-g-PNVP) was evaluated as adsorbent for the removal of Cu(II) ions from aqueous solutions in a batch experiment. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results showed that the adsorption of the copper ions onto the beads agreed well with Langmuir model with the maximum capacity (qmax) of 122mgg-1.
    Matched MeSH terms: Ions/chemistry
  19. Sadiq NM, Abdulwahid RT, Aziz SB, Woo HJ, Kadir MFZ
    Int J Biol Macromol, 2024 Apr;265(Pt 1):130751.
    PMID: 38471616 DOI: 10.1016/j.ijbiomac.2024.130751
    The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.
    Matched MeSH terms: Ions/chemistry
  20. Khaledi H, Olmstead MM, Ali HM, Thomas NF
    Inorg Chem, 2013 Feb 18;52(4):1926-41.
    PMID: 23363432 DOI: 10.1021/ic302150j
    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].
    Matched MeSH terms: Ions/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links