OBJECTIVE: The objective of this study was to evaluate the structural and compositional changes on the root surface of extracted human permanent teeth after application of DLs (810 nm) with varying time interval.
MATERIALS AND METHODS: Twenty samples of single-rooted periodontally compromised extracted teeth were utilized for this study. Root planning was done and the roughness caused by the instrumentation was measured using profilometric analysis. Then, the samples were divided into four groups, with DL application time: Group 1 - laser application for 15 s, Group 2 - laser application for 30 s, Group 3 - laser application for 45 s, and Group 4 - laser application for 60 s. A scanning electron microscope was used to examine the cemental surface and energy-dispersive X-ray analysis software assesses the compositional changes of the teeth in each group.
RESULTS: This study reveals that on exposure of DL (810 nm) on the root surface when time of exposure increases, there were relative increases in surface irregularities and charring. There were significant changes in the chemical composition of the tooth surface.
BACKGROUND DATA: The response of human blood to LLL irradiation gives important information about the mechanism of interaction of laser light with living organisms. Materials and methods Blood samples were collected into ethylenediaminetetraacetic acid (EDTA)-containing tubes, and each sample was divided into two equal aliquots, one to serve as control and the other for irradiation. The aliquot was subjected to laser irradiation for 20, 30, 40, or 50 min at a fixed power density of 0.03 W/cm(2). Mean cell volume (MCV) and red blood cell (RBC) counts were measured immediately after irradiation using a computerized hemtoanalyzer.
RESULTS: Significant decrease in RBC volume (p
Result: All four patients revealed a good esthetic outcome and reported no pain postoperatively. Healing was uneventful, and definitive restoration was delivered within two to four weeks postoperatively.
Conclusion: Within the limitation of these case series, the dual-wavelength super pulsed diode laser has the capacity to deliver peak powers resulting in efficient cutting and less tissue charring and also as an alternative tool for removal of gingival pigmentation. Prospective clinical research with larger sample size is needed for conclusive results.