Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. AHMAD SHAHIR BIN JAMALUDIN, ABDULLAH BIN YASSIN
    Sains Malaysiana, 2013;42:1727-1733.
    Invention of milling combined laser sintering system (MLSS) is able to reduce the mould manufacturing time and improve the mould accuracy. Thus, more study is needed to increase the understanding for the laser sintered material machining characteristic to gain benefit from the invention of MLSS. This paper clarified the analysis of laser sintered material machinability with the application of Finite Element Method (FEM). Mild steel AISI1055 was applied in developing the Finite Element model in this study due to its popularity in machinability test and adequate level of data availability. 2D orthogonal cutting was employed on edge design tools with updated Lagrangian coupled thermo mechanical plane strain model. Adaptive meshing, tool edge radius and various types of friction models were assigned to obtain efficient simulations and precise cutting results. Cutting force and cutting-edge temperature estimated by Finite Element Method are validated against corresponding experimental values by previous researchers. In the study, cutting force increases when radial depth increases and lowest error acquired when the shear friction factor of 0.8 was applied. Machining simulation for laser sintered materials estimated lower cutting force compared with mild steel AISI1055 due to lower Young modulus. Higher cutting temperature estimated for machining simulation laser sintered material compared with machining simulation mild steel AISI1055 due to its low thermal conductivity.
    Matched MeSH terms: Mechanical Phenomena
  2. Penjumras P, Rahman RA, Talib RA, Abdan K
    ScientificWorldJournal, 2015;2015:293609.
    PMID: 26167523 DOI: 10.1155/2015/293609
    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R (2)) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m(2), respectively.
    Matched MeSH terms: Mechanical Phenomena
  3. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Mechanical Phenomena
  4. Rizal S, Mistar EM, Oyekanmi AA, H P S AK, Alfatah T, Olaiya NG, et al.
    Molecules, 2021 Jul 13;26(14).
    PMID: 34299524 DOI: 10.3390/molecules26144248
    The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
    Matched MeSH terms: Mechanical Phenomena
  5. Shahmohammadi HR, Bakar J, Rahman RA, Adzhan NM
    J Food Sci, 2014 Feb;79(2):E178-83.
    PMID: 24410375 DOI: 10.1111/1750-3841.12324
    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.
    Matched MeSH terms: Mechanical Phenomena
  6. Nurkhoeriyati T, Huda N, Ahmad R
    J Food Sci, 2011 Jan-Feb;76(1):S48-55.
    PMID: 21535715 DOI: 10.1111/j.1750-3841.2010.01963.x
    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P < 0.05). The ALS process generated the highest lipid reduction, and the CON process yielded the lowest reduction (P < 0.05). Surimi-like material produced by the CON process had the highest gel strength, salt extractable protein (SEP), and water holding capacity (WHC), followed by materials produced via the ALS and ACS processes and untreated duck meat (P < 0.05). The material produced by the CON process also had the highest cohesiveness, hardness, and gumminess values and the lowest springiness value. Material produced by the ACS and ALS processes had higher whiteness values than untreated duck meat gels and gels produced by the CON method (P < 0.05). Surimi-like material produced using the ACS and CON processes had significantly higher myoglobin removal (P < 0.05) than that produced by the ALS method and untreated duck meat. Among all surimi-like materials, the highest Ca(2+)-ATPase activity was found in conventionally produced gels (P < 0.05). This suggests that protein oxidation was induced by acid-alkaline solubilization. The gels produced by ALS had a significantly lower (P < 0.05) total SH content than the other samples. This result showed that the acid-alkaline solubilization clearly improved gelation and color properties of spent duck and possibly applied for other high fat raw material.
    Matched MeSH terms: Mechanical Phenomena
  7. Nurkhoeriyati T, Huda N, Ahmad R
    J Food Sci, 2012 Jan;77(1):S91-8.
    PMID: 22260136 DOI: 10.1111/j.1750-3841.2011.02519.x
    The physicochemical properties and sensory analysis of duck meatballs containing duck meat surimi-like material during frozen storage were evaluated. Properties of meatballs containing duck surimi-like material prepared by acid solubilization (ACDS), alkaline solubilization (ALDS), and conventional processing (CDS) as well as duck mince (as the control, CON) were compared. ACDS had significantly higher (P < 0.05) moisture and protein content and lower fat content compared with CON. The thiobarbituric acid-reactive substances (TBARS) value of all samples increased as the storage time increased up to week 8 (P < 0.05), but thereafter it decreased in most of the samples. ACDS and ALDS had significantly higher TBARS values (P < 0.05), and these values remained higher than those of the other samples throughout the frozen storage period. Addition of surimi-like material to the meatballs had significant effects (P < 0.05) on springiness, gumminess, and chewiness values of all samples. Ingredients and frozen storage affected most sensory attributes in samples significantly (P<0.05). No significant increase in growth of organisms occurred during 12-wk frozen storage The results indicate that acid-alkaline solubilization methods improve both physicochemical and sensory properties of duck meatballs containing duck surimi-like material. Thus, these techniques should be applicable to product development of duck surimi-like material.
    Matched MeSH terms: Mechanical Phenomena
  8. Taufiqurrahman I, Ahmad A, Mustapha M, Lenggo Ginta T, Ady Farizan Haryoko L, Ahmed Shozib I
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673716 DOI: 10.3390/ma14051129
    Welding parameters obviously determine the joint quality during the resistance spot welding process. This study aimed to investigate the effect of welding current and electrode force on the heat input and the physical and mechanical properties of a SS316L and Ti6Al4V joint with an aluminum interlayer. The weld current values used in this study were 11, 12, and 13 kA, while the electrode force values were 3, 4, and 5 kN. Welding time and holding time remained constant at 30 cycles. The study revealed that, as the welding current and electrode force increased, the generated heat input increased significantly. The highest tensile-shear load was recorded at 8.71 kN using 11 kA of weld current and 3 kN of electrode force. The physical properties examined the formation of a brittle fracture and several weld defects on the high current welded joint. The increase in weld current also increased the weld diameter. The microstructure analysis revealed no phase transformation on the SS316L interface; instead, the significant grain growth occurred. The phase transformation has occurred on the Ti6Al4V interface. The intermetallic compound layer was also investigated in detail using the EDX (Energy Dispersive X-Ray) and XRD (X-Ray Diffraction) analyses. It was also found that both stainless steel and titanium alloy have their own fusion zone, which is indicated by the highest microhardness value.
    Matched MeSH terms: Mechanical Phenomena
  9. Ahmed T, Rahman NA, Alam MK
    Biomed Res Int, 2021;2021:6663683.
    PMID: 33959664 DOI: 10.1155/2021/6663683
    Objective: To compare the orthodontic bracket debonding force and assess the bracket failure pattern clinically between different teeth by a validated prototype debonding device. Materials and Method. Thirteen (13) patients at the end of comprehensive fixed orthodontic treatment, awaiting for bracket removal, were selected from the list. A total of 260 brackets from the central incisor to the second premolar in both jaws were debonded by a single clinician using a validated prototype debonding device equipped with a force sensitive resistor (FSR). Mean bracket debonding forces were specified to ten (10) groups of teeth. Following debonding, Intraoral microphotographs of the teeth were taken by the same clinician to assess the bracket failure pattern using a 4-point scale of adhesive remnant index (ARI). Statistical analysis included one-way ANOVA with post hoc Tukey HSD and independent sample t-test to compare in vivo bracket debonding force, Cohen's kappa (κ), and a nonparametric Kruskal-Wallis test for the reliability and the assessment of ARI scoring.

    Results: A significant difference (p < 0.001) of mean debonding force was found between different types of teeth in vivo. Clinically, ARI scores were not significantly different (p = 0.921) between different groups, but overall higher scores were predominant.

    Conclusion: Bracket debonding force should be measured on the same tooth from the same arch as the significant difference of mean debonding force exists between similar teeth of the upper and lower arches. The insignificant bracket failure pattern with higher ARI scores confirms less enamel damage irrespective of tooth types.

    Matched MeSH terms: Mechanical Phenomena
  10. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Mechanical Phenomena
  11. Ayatollahi MR, Yahya MY, Karimzadeh A, Nikkhooyifar M, Ayob A
    PMID: 26046269 DOI: 10.1016/j.msec.2015.05.004
    The aim of this study was to investigate the effects of temperature change and immersion in two common beverages on the mechanical and tribological properties for three different types of dental restorative materials. Thermocycling procedure was performed for simulating temperature changes in oral conditions. Black tea and soft drink were considered for beverages. Universal composite, universal nanohybrid composite and universal nanofilled composite, were used as dental materials. The nanoindentation and nanoscratch experiments were utilized to determine the elastic modulus, hardness, plasticity index and wear resistance of the test specimens. The results showed that thermocycling and immersion in each beverage had different effects on the tested dental materials. The mechanical and tribological properties of nanohybrid composite and nanocomposite were less sensitive to temperature change and to immersion in beverages in comparison with those of the conventional dental composite.
    Matched MeSH terms: Mechanical Phenomena
  12. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Mechanical Phenomena
  13. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Mechanical Phenomena
  14. Hazwan Hussin M, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, et al.
    Int J Biol Macromol, 2018 Jul 01;113:1266-1272.
    PMID: 29548919 DOI: 10.1016/j.ijbiomac.2018.03.048
    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive.
    Matched MeSH terms: Mechanical Phenomena
  15. Onjun T, Chatthong .
    Sains Malaysiana, 2017;46:1385-1392.
    A set of coupled particle and thermal transport equations is used to study a formation and sustainability of an edge transport barrier (ETB) in tokamak plasmas based on two-field bifurcation. The two transport equations are numerically solved for spatio-temporal profiles of plasma pressure and density. The plasma core transport includes both neoclassical and turbulent effects, where the latter can be suppressed by flow shear mechanism. The flow shear, approximated from the force balance equation, is proportional to the product of pressure and density gradients, resulting in non-linearity behaviors in this calculation. The main thermal and particle sources are assumed to be localized near plasma center and edge, respectively. It is found that the fluxes versus gradients regime illustrates bifurcation nature of the plasma. This picture of the plasma implies hysteresis properties in fluxes versus gradients space. Hence, near marginal point, the perturbation in thermal or particle sources can trigger an L-H transition. Due to hysteresis, the triggered H-mode can be sustained and the central plasma pressure and density can be enhanced.
    Matched MeSH terms: Mechanical Phenomena
  16. Lin PC, Fang JC, Lin JW, Tran XV, Ching YC
    Materials (Basel), 2020 Sep 19;13(18).
    PMID: 32961763 DOI: 10.3390/ma13184170
    Effects of processing parameters on preheated (heat-assisted) clinching process to join aluminum alloy 5052-H32 (AA5052) and thermoplastic carbon-fiber-reinforced-plastic (TP-CFRP) sheets for cross-tension (CT) specimens were first studied. Preheating was critical since brittle TP-CFRP could be softened to avoid fracturing or cracking during clinching process. Four processing parameters, including punching force, die depth, heating mode, and heating temperature, were considered. Quasi-static tests and microscope observations were taken to evaluate AA5052/TP-CFRP clinch joints in CT specimens and determine appropriate processing parameters for fatigue tests. Finally, fatigue data and failure mode of clinch joints in CT specimens were obtained and discussed.
    Matched MeSH terms: Mechanical Phenomena
  17. Utami D, Ubaidillah, Mazlan SA, Imaduddin F, Nordin NA, Bahiuddin I, et al.
    Materials (Basel), 2018 Nov 06;11(11).
    PMID: 30404193 DOI: 10.3390/ma11112195
    This paper investigates the field-dependent rheological properties of magnetorheological (MR) fluid used to fill in MR dampers after long-term cyclic operation. For testing purposes, a meandering MR valve was customized to create a double-ended MR damper in which MR fluid flowed inside the valve due to the magnetic flux density. The test was conducted for 170,000 cycles using a fatigue dynamic testing machine which has 20 mm of stroke length and 0.4 Hz of frequency. Firstly, the damping force was investigated as the number of operating cycles increased. Secondly, the change in viscosity of the MR fluid was identified as in-use thickening (IUT). Finally, the morphological observation of MR particles was undertaken before and after the long-term operation. From these tests, it was demonstrated that the damping force increased as the number of operating cycles increases, both when the damper is turn on (on-state) and off (off-state). It is also observed that the particle size and shape changed due to the long operation, showing irregular particles.
    Matched MeSH terms: Mechanical Phenomena
  18. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
    Matched MeSH terms: Mechanical Phenomena
  19. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VS, et al.
    Med Eng Phys, 2016 Aug;38(8):767-75.
    PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012
    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
    Matched MeSH terms: Biomechanical Phenomena; Mechanical Phenomena*
  20. Ying Wang, Yonghui Chen, Zhenhua Hu, Qiang Feng, Desen Kong
    Sains Malaysiana, 2017;46:2231-2239.
    Ground improvement using artificial crust composite foundation, consisting of stabilization of soft clay and composite foundation, is an effective technique for the treatment of deep soft soil layers under infrastructure embankments. In this study, the load responses and settlement performance of this improvement technique were investigated using two centrifuge model tests to compare the variations of the vertical deformation, pore water pressure, axial force of the piles and tensile stress at the bottom of the artificial crust in the crust composite foundation with those in pile-supported embankment. The results of centrifuge model tests showed that the load responses and settlement performance of artificial crust composite foundation was different from the pile-supported embankment, which displayed mainly that the final middle settlement of crust composite foundation can be reduced by about 15% compared with those of pile-supported embankment with the same length of pile and construction cost. The deformation of the crust with the characteristics of the plate was found based on the change of the tensile stress. Additionally, the excess pore water pressure in the crust composite foundation was lower owing to the stress diffusion effect of the crust during the loading period and the dissipation rate of excess pore water pressure was slower due to lower permeability of the crust at the same loading period. Eventually, the axial force of the middle piles was reduced. At the same time, the boundary stress was functioned with the crust, the axial force of the side piles was improved. The comparison of measured and calculated results was carried out using the stress reduction ratio, the result shows that the bearing capacity of the subsoil in the crust composite was improved.
    Matched MeSH terms: Mechanical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links