Displaying publications 1 - 20 of 111 in total

Abstract:
Sort:
  1. Lum KY, Oppong R, Kigozi J
    Asia Pac J Public Health, 2022 Nov;34(8):752-760.
    PMID: 36039503 DOI: 10.1177/10105395221122643
    The primary aim of this study is to assess the evidence on the cost-effectiveness of type 2 diabetes mellitus (T2DM) interventions with a focus on diabetes education, lifestyle modifications, surgical intervention, and pharmacological therapy in low- and middle-income countries (LMICs). A systematic review was conducted to identify economic evaluations of T2DM interventions published in LMICs for the period 2009-2019. A total of 25 studies were identified, with more than half of the studies being decision analytic models. Critical appraisal of the identified studies showed they were of good quality. Overall, the reported interventions in this review were very heterogeneous, which made them difficult to compare. However, there was strong evidence suggesting that diabetes education was a very cost-effective strategy in LMICs. Further evidence on affordability and budget impact of bariatric surgery is required before adopting the intervention. Metformin-based therapy showed promising evidence on cost-effectiveness and thus should be offered to T2DM patients in LMICs. On the contrary, the cost-effectiveness of lifestyle modifications remains understudied in LMICs. The findings in this review can inform policy guidance toward the inclusion of T2DM interventions in the benefit packages for Universal Health Coverage in LMICs.
    Matched MeSH terms: Metformin*
  2. Kow CS, Hasan SS
    J Med Virol, 2020 Nov;92(11):2401-2402.
    PMID: 32470199 DOI: 10.1002/jmv.26090
    Matched MeSH terms: Metformin*
  3. Bera H, Kumar S
    Int J Biol Macromol, 2018 Mar;108:1053-1062.
    PMID: 29122714 DOI: 10.1016/j.ijbiomac.2017.11.019
    The current study aimed at developing diethonolamine-modified high-methoxyl pectin (DMP)-alginate (ALG) based core-shell composites for controlled intragastric delivery of metformin HCl (MFM) by combined approach of floating and bioadhesion. DMP with degree of amidation of 48.72% was initially accomplished and characterized by FTIR, DSC and XRD analyses. MFM-loaded core matrices were then fabricated by ionotropic gelation technique employing zinc acetate as cross-linker. The core matrices were further coated by fenugreek gum (FG)-ALG gel membrane via diffusion-controlled interfacial complexation method. Various formulations demonstrated excellent drug encapsulation efficiency (DEE, 51-70%) and sustained drug eluting behavior (Q8h, 72-96%), which were extremely influenced by polymer-blend (ALG:DMP) ratios, low density additives (olive oil/magnesium stearate) and FG-ALG coating inclusion. The drug release profile of the core-shell matrices (F-7) was best fitted in zero-order kinetic model with case-II transport driven mechanism. It also portrayed outstanding gastroretentive characteristics. Moreover, the composites were analyzed for surface morphology, drug-excipients compatibility, thermal behavior and drug crystallinity. Thus, the developed composites are appropriate for controlled stomach-specific delivery of MFM for type 2 diabetes management.
    Matched MeSH terms: Metformin/metabolism; Metformin/chemistry
  4. Meka VS, Gorajana A, Dharmanlingam SR, Kolapalli VR
    Invest Clin, 2013 Dec;54(4):347-59.
    PMID: 24502177
    The aim of the present research was to prepare and evaluate a gastroretentive drug delivery system for metformin HCl, using synthetic and semi-synthetic polymers. The floating approach was applied for preparing gastroretentive tablets (GRT) and these tablets were manufactured by the direct compression method. The drug delivery system comprises of synthetic and semi-synthetic polymers such as polyethylene oxide and Carboxymethyl ethyl cellulose (CMEC) as release-retarding polymers. GRT were evaluated for physico-chemical properties like weight variation, hardness, assay friability, in vitro floating behaviour, swelling studies, in vitro dissolution studies and rate order kinetics. Based upon the drug release and floating properties, two formulations (MP04 & MC03) were selected as optimized formulations. The optimized formulations MP04 and MC03 followed zero order rate kinetics, with non-Fickian diffusion and first order rate kinetics with erosion mechanism, respectively. The optimized formulation was characterised with FTIR studies and it was observed that there was no interaction between the drug and polymers.
    Matched MeSH terms: Metformin/administration & dosage*
  5. Yuen KH, Peh KK, Tan BL
    Drug Dev Ind Pharm, 1999 May;25(5):613-8.
    PMID: 10219530
    This study was conducted to compare the bioavailability of two controlled-release metformin preparations (Diabetmin Retard and Glucophage Retard) and also to correlate the in vitro and in vivo data obtained with the two preparations. Twelve healthy volunteers participated in the study, conducted according to a completely randomized, two-way crossover design. The preparations were compared using area under the plasma concentration-time curve AUC0-infinity, time to reach peak plasma concentration Tmax, and peak plasma concentration Cmax, while correlation was determined between in vitro release and in vivo absorption. Diabetmin Retard demonstrated a slower rate of in vitro release, but a faster rate of in vivo absorption than Glucophage Retard. However, the in vivo absorption of both products was found to be slower than that of drug released in vitro. A satisfactory relationship could be established between the in vitro and in vivo results, but there was no rank order correlation. No statistically significant difference was observed between the two preparations in the parameters AUC0-infinity and Cmax. However, a slight but statistically significant difference was observed between the Tmax values, but it may not be therapeutically significant. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity values, as well as the logarithmic transformed Cmax values, of Diabetmin Retard over those of Glucophage Retard was within the acceptance criteria of 0.80-1.25.
    Matched MeSH terms: Metformin/administration & dosage*; Metformin/pharmacokinetics; Metformin/chemistry
  6. Nor-raidah Rahmat, Amira Kamalrudin, Shazrul Fazry, Mahanem Mat Noor
    Sains Malaysiana, 2018;47:1109-1115.
    Diabetes melitus telah terbukti mengganggu penghasilan testosteron dan menyebabkan masalah libido dalam kalangan
    lelaki. Sehingga kini, tiada kajian mengenai potensi Lunasia amara dalam membaiki aktiviti seksual tikus jantan teraruh
    diabetes. Oleh itu, kajian ini dijalankan untuk mengenal pasti potensi afrodisiak L. amara ke atas tikus jantan teraruh
    diabetes. Empat kumpulan tikus teraruh diabetes masing-masing diberi perlakuan ekstrak L. amara (250 dan 500 mg/
    kg berat tubuh), 500 mg/kg metformin dan air suling. Tikus kumpulan kawalan normal tanpa aruhan diabetes menerima
    perlakuan air suling. Perlakuan diberikan secara suap paksa selama 30 hari untuk melihat kesan L. amara ke atas status
    libido, aras testosteron serum, berat tubuh tikus, morfometri testis dan epididimis kauda serta aktiviti enzim antioksida
    testis tikus teraruh diabetes berbanding kawalan. Keputusan kajian menunjukkan berlaku penurunan libido, aras
    testosteron dan aktiviti khusus enzim antioksida (glutation peroksidase, katalase dan superoksida dismutase) testis tikus
    teraruh diabetes secara signifikan (p<0.05) pada kedua-dua dos tersebut berbanding kawalan normal. Sementara itu,
    perlakuan L. amara didapati tidak menjejaskan morfometri testis, epididimis kauda dan berat tubuh tikus yang menerima
    perlakuan L. amara berbanding kawalan normal. Kajian ini membuktikan bahawa ekstrak akuas batang L. amara pada
    dos 250 dan 500 mg/kg berat tubuh tidak berupaya memperbaiki aktiviti seksual tikus jantan teraruh diabetes.
    Matched MeSH terms: Metformin
  7. Razavi M, Karimian H, Yeong CH, Fadaeinasab M, Khaing SL, Chung LY, et al.
    Drug Des Devel Ther, 2017;11:1-15.
    PMID: 28031701 DOI: 10.2147/DDDT.S115466
    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.
    Matched MeSH terms: Metformin/administration & dosage*; Metformin/analysis*; Metformin/blood; Metformin/pharmacokinetics
  8. Poulose V
    Med J Malaysia, 2002 Jun;57(2):209-10.
    PMID: 24326653
    Metformin Associated Lactic Acidosis (MALA) is a rare, but serious complications of Type 2 diabetes mellitus treatment with a mortality rate of around 50%. It most commonly occurs in the setting of hepatic, cardiac or renal insufficiency. We report the case of an elderly female with MALA and concomitant starvation ketosis in the absence of any known risk factor, who went undiagnosed for a period of at least a month and made a complete recovery in the hospital.
    Matched MeSH terms: Metformin*
  9. Chen Y, Li H, Ye Z, Găman MA, Tan SC, Zhu F
    Eur J Pharmacol, 2020 Nov 05;886:173458.
    PMID: 32763300 DOI: 10.1016/j.ejphar.2020.173458
    Metformin administration has been reported to influence the carotid intima-media thickness (CIMT) in humans. However, since previously conducted studies have yielded inconsistent results, the exact effect of metformin on CIMT remains unclear. Causes that could lead to inconsistency in reported research could be the duration and dose of the intervention, as well as the sample size. To address this inconsistency, we conducted a systematic review and meta-analysis to evaluate the influence of metformin on CIMT in human subjects. We identified eligible studies by searching several electronic databases (EMBASE, PubMed-MEDLINE, Web of Science and Google Scholar) up to December 12, 2019. Data were pooled using the random-effects model. Combining data from 1087 participants (9 studies), our meta-analysis revealed that the administration of metformin resulted in a significant reduction in CIMT (WMD = -0.049 mm; 95% CI: -0.095, -0.004). Stratified analyses showed that an intervention lasting ≥12 months (WMD: -0.084 mm, 95% CI: -0.145, -0.024) and an intake of metformin ≤1500 mg/day (WMD: -0.081 mm, 95% CI: -0.132, -0.029) resulted in a significantly greater reduction in CIMT. However, an intervention duration of less than 12 months and an intake of metformin ˃1500 mg/day yielded no significant effects on CIMT. The results of the current study confirm that metformin administration is associated with a significant reduction in CIMT. Taking into account that CIMT reflects the burden of atherosclerosis, the clinical utility of metformin might also be related to its anti-atherogenic effects.
    Matched MeSH terms: Metformin/pharmacology*
  10. Kamal DAM, Ibrahim SF, Ugusman A, Zaid SSM, Mokhtar MH
    Nutrients, 2022 Oct 18;14(20).
    PMID: 36297046 DOI: 10.3390/nu14204364
    Polycystic ovary syndrome (PCOS) has been linked to aberrant folliculogenesis and abnormalities in the aromatase enzyme (Cyp19a1) and the steroidogenic enzyme, 17-alpha-hydroxylase (Cyp17a1) expression. It has been demonstrated that Kelulut honey (KH) improves both female and male reproductive system anomalies in animal studies. Here, we examined the effects of isolated and combined KH, metformin, and clomiphene in improving folliculogenesis, aromatase, and steroidogenic enzyme profiles and ovarian histomorphology in letrozole-induced PCOS rats. Letrozole (1 mg/kg/day) was administered to female Sprague-Dawley (SD) rats for 21 days to induce PCOS. PCOS rats were subsequently divided into six experimental groups: untreated, treatment with metformin (500 mg/kg/day), clomiphene (2 mg/kg/day), KH (1 g/kg/day), combined KH (1 g/kg/day) and metformin (500 mg/kg/day), and combined KH (1 g/kg/day) and clomiphene (2 mg/kg/day). All treatments were given orally for 35 days. We found that KH was comparable with clomiphene and metformin in improving the expression of Cyp17a1 and Cyp19a1, apart from enhancing folliculogenesis both histologically and through the expression of folliculogenesis-related genes. Besides, the combination of KH with clomiphene was the most effective treatment in improving the ovarian histomorphology of PCOS rats. The effectiveness of KH in restoring altered folliculogenesis, steroidogenic, and aromatase enzyme profiles in PCOS warrants a future clinical trial to validate its therapeutic effect clinically.
    Matched MeSH terms: Metformin/therapeutic use
  11. Ben-Hander GM, Makahleh A, Saad B, Saleh MI
    PMID: 24200841 DOI: 10.1016/j.jchromb.2013.10.007
    A three phase hollow fiber liquid-phase microextraction with in situ derivatization (in situ HF-LPME) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method was developed for the trace determination of metformin hydrochloride (MH) in biological fluids. A new derivatization agent pentafluorobenzoyl chloride (PFBC) was used. Several parameters that affect the derivatization and extraction efficiency were studied and optimized (i.e., type of organic solvent, volume of NaOH (4M) and derivatization agent in the donor phase, acceptor phase (HCl) concentration, stirring speed, temperature, time and salt addition). Under the optimum conditions (organic solvent, dihexyl ether; volume of NaOH (4M) and derivatization agent (10mg PFBC in 1mL acetonitrile) in the donor phase, 600 and100μL, respectively; acceptor phase, 100mM HCl (10μL); stirring speed, 300rpm; extraction time, 30min; derivatization temperature, 70°C; without addition of salt) an enrichment factor of 210-fold was achieved. Good linearity was observed over the range of 1-1000ngmL(-1) (r(2)=0.9998). The limits of detection and quantitation were 0.56 and 1.68ngmL(-1), respectively. The proposed method has been applied for the determination of MH in biological fluids (plasma and urine) and water samples. Prior to the microextraction treatment of plasma samples, deproteinization step using acetonitrile was conducted. The proposed method is simple, rapid, sensitive and suitable for the determination of MH in a variety of samples.
    Matched MeSH terms: Metformin/analysis*
  12. Ben-Hander GM, Makahleh A, Saad B, Saleh MI, Cheng KW
    Talanta, 2015 Jan;131:590-6.
    PMID: 25281145 DOI: 10.1016/j.talanta.2014.08.037
    A new analytical method for the simultaneous determination of the antidiabetic drugs rosiglitazone (ROS) and metformin hydrochloride (MH) with marked differences in their affinity towards organic solvents (log P of 2.4 and -1.43, respectively) was developed. Prior to the HPLC separation, the drugs were subjected to a sequential hollow fiber liquid phase microextraction (HF-LPME) procedure. Two sequential HF-LPME approaches were considered, the preferred one involves the use of two vials containing solution mixtures for the extraction of ROS (vial 1) and MH (vial 2), respectively, but using the same fiber and acceptor phase. Important parameters that affect the extraction efficiency such as extracting solvent, donor phase conditions, HCl concentration, agitation, extraction time, addition of salt, etc. were studied. Under the optimum conditions, good enrichment factors (EF, 471 and 86.6 for ROS and MH, respectively) were achieved. Calibration curves were linear over the range 1-500 (r(2)=0.998) and 5-2500 ng mL(-1) (r(2)=0.999) for ROS and MH, respectively. The relative standard deviation values (RSD%) for six replicates were below 8.4%. Detection and quantitation limits based on S/N ratio of 3 and 10 were 0.12, 1.0 and 0.36, 3.0 ng mL(-1) for ROS and MH, respectively. The proposed method is simple, sensitive and opens up new opportunities for the microextraction of analytes with contrasting properties.
    Matched MeSH terms: Metformin/blood*; Metformin/urine*
  13. Yuen KH, Wong JW, Billa N, Julianto T, Toh WT
    Int J Clin Pharmacol Ther, 1999 Jul;37(7):319-22.
    PMID: 10442505
    The bioavailability of a generic preparation of metformin (Diabetmin from Hovid Sdn Bhd) was evaluated in comparison with a proprietary product (Glucophage from Lipha Pharma Ltd., UK).
    Matched MeSH terms: Metformin/blood; Metformin/pharmacokinetics*
  14. Chang CT, Ang JY, Wong JM, Tan SS, Chin SK, Lim AB, et al.
    Med J Malaysia, 2020 05;75(3):286-291.
    PMID: 32467546
    AIM: This study is conducted to compare the pharmacokinetic profiles of two fixed dose combination of metformin/glibenclamide tablets (500mg/5 mg per tablet).

    MATERIALS AND METHODS: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2- period crossover study with a washout period of 7 days. All 28 adult male subjects were required to fast for at least 10 hours prior to drug administration and they were given access to water ad libitum during this period. Thirty minutes prior to dosing, all subjects were served with a standardized high-fat and high-calorie breakfast with a total calorie of 1000 kcal which was in accordance to the EMA Guideline on the Investigation of Bioequivalence. Subsequently, subjects were administered either the test or reference preparation with 240mL of plain water in the first trial period. During the second trial period, they received the alternate preparation. Plasma levels of glibenclamide and metformin were analysed separately using two different high performance liquid chromatography methods.

    RESULTS: The 90% confidence interval (CI) for the ratio of the AUC0-t, AUC0-∞, and Cmax of the test preparation over those of the reference preparation were 0.9693-1.0739, 0.9598- 1.0561 and 0.9220 - 1.0642 respectively. Throughout the study period, no serious drug reaction was observed. However, a total of 26 adverse events (AE)/side effects were reported, including 24 that were definitely related to the study drugs, namely giddiness (n=17), while diarrheoa (n=3), headache (n=2) and excessive hunger (n=2) were less commonly reported by the subjects.

    CONCLUSION: It can be concluded that the test preparation is bioequivalent to the reference preparation.

    Matched MeSH terms: Metformin/administration & dosage*; Metformin/pharmacokinetics*
  15. Awaluddin R, Nugrahaningsih DAA, Solikhah EN
    Med J Malaysia, 2020 05;75(Suppl 1):10-13.
    PMID: 32471963
    INTRODUCTION: Diabetes mellitus is known as one of the risk factors for Idiopathic Pulmonary Fibrosis (IPF) development. Recently, metformin, the commonly used antidiabetic medication, is reported to have a therapeutic effect in IPF. However, the benefit of metformin therapy in IPF is still controversial. The study aims to investigate the metformin effect on the fibroblast and macrophage co-culture under lipopolysaccharides (LPS) and high glucose treatment.

    METHOD: The NIH 3T3 and RAW 264.7 co-culture were induced with LPS and high glucose before it was treated with metformin in different concentration. After 24 hours of treatment, the media and the cells were collected for further examination. The collagen expression was measured using Sirius red dye in the media. The IL-6 and TGF β mRNA examination were done using real-time PCR.

    RESULT: Our study showed that NIH 3T3 and RAW 264.7 coculture treated with metformin has higher collagen expression, but lower IL-6 mRNA expression compares to those on co-culture without treatment.

    CONCLUSION: Metformin increases fibrosis markers in LPS and high glucose-induced NIH 3T3 and RAW 264.7 coculture despite its ability to improve IL-6 mRNA expression.

    Matched MeSH terms: Metformin/administration & dosage*; Metformin/pharmacology*
  16. Kah Hay Yuen, Kok Khiang Peh
    J Chromatogr B Biomed Sci Appl, 1998 Jun 12;710(1-2):243-6.
    PMID: 9686895
    A simple high-performance liquid chromatographic method using ultraviolet detection was developed for the determination of metformin in human plasma. The method entailed direct injection of the plasma sample after deproteination using perchloric acid. The mobile phase comprised 0.01 M potassium dihydrogen orthophosphate (pH 3.5) and acetonitrile (60:40, v/v). Analyses were run at a flow-rate of 1.0 ml/min with the detector operating at a detection wavelength of 234 nm. The method is specific and sensitive, with a quantification limit of approximately 60 ng/ml and a detection limit of 15 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery value was about 97%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The calibration curve was linear over a concentration range of 62.5-4000 ng/ml.
    Matched MeSH terms: Metformin/blood*; Metformin/pharmacokinetics
  17. Alshishani A, Makahleh A, Yap HF, Gubartallah EA, Salhimi SM, Saad B
    Talanta, 2016 Dec 01;161:398-404.
    PMID: 27769423 DOI: 10.1016/j.talanta.2016.08.067
    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r2>0.99 over the range of 20-2000µgL-1. The limits of detection and quantitation were 1.4 and 4.1µgL-1, respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.
    Matched MeSH terms: Metformin/blood*; Metformin/chemistry
  18. Yang X, Kord-Varkaneh H, Talaei S, Clark CCT, Zanghelini F, Tan SC, et al.
    Pharmacol Res, 2020 01;151:104588.
    PMID: 31816435 DOI: 10.1016/j.phrs.2019.104588
    BACKGROUND: A meta-analysis is needed to comprehensively consolidate findings from the influence of metformin on IGF-1 levels. The present study was conducted with the objective to accurately evaluate the influence of metformin intake on IGF-1 levels via a meta-analysis of randomized controlled trials.

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating the effects of metformin on serum IGF-1 levels.

    RESULTS: 11 studies involving a total of 569 individuals reported changes in IGF-1 plasma concentrations as an outcome measure. Pooled results demonstrated an overall non-significant decline in IGF-1 following metformin intake (WMD: -8.292 ng/ml, 95 % CI: -20.248, 3.664, p = 0.174) with heterogeneity among (p = 0.000,I2 = 87.1 %). The subgroup analyses displayed that intervention duration <12 weeks on children (WMD:-55.402 ng/ml, 95 % CI: -79.845, -30.960, I2 = 0.0 %) significantly reduced IGF-1. Moreover, in age 18 < years older metformin intake (WMD: 15.125 ng/ml, 95 % CI: 5.522, 24.729, I2 = 92.5 %) significantly increased IGF-1 than 18 ≤ years older (WMD:-1.038 ng/ml, 95 % CI: -3.578,1.502,I2 = 78.0 %). Following dose-response evaluation, metformin intake reduced IGF-1 (coefficient for dose-response analysis= -13.14, P = 0.041 and coefficient for liner analysis= -0.066, P = 0.038) significantly based on treatment duration.

    CONCLUSION: We found in children, intervention duration <12 weeks yielded significant reductions in IGF-1, whilst paradoxically, in participants >18 years old, metformin intake significantly increased IGF-1. We suggest that caution be taken when interpreting the findings of this review, particularly given the discordant supplementation practices between children and adults.

    Matched MeSH terms: Metformin/administration & dosage; Metformin/pharmacology*
  19. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal Chem, 2019 06 04;91(11):7466-7473.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
    Matched MeSH terms: Metformin/isolation & purification*; Metformin/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links