Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, et al.
    J Med Primatol, 2017 04;46(2):31-41.
    PMID: 28266719 DOI: 10.1111/jmp.12256
    BACKGROUND: Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model.

    METHODS: DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals.

    RESULTS: All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry.

    CONCLUSIONS: The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.

    Matched MeSH terms: Monkey Diseases/parasitology
  2. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2019 Oct;52(5):679-684.
    PMID: 31320238 DOI: 10.1016/j.jmii.2019.05.012
    Plasmodium knowlesi is now regarded as the fifth malaria parasite causing human malaria as it is widely distributed in South-East Asian countries especially east Malaysia where two Malaysian states namely Sabah and Sarawak are situated. In 2004, Polymerase Chain Reaction (PCR) was applied for diagnosing knowlesi malaria in the Kapit Division of Sarawak, Malaysia, so that human P. knowlesi infections could be detected correctly while blood film microscopy diagnosed incorrectly as Plasmodium malariae. This parasite is transmitted from simian hosts to humans via Anopheles vectors. Indonesia is the another country in South East Asia where knowlesi malaria is moderately prevalent. In the last decade, Sarawak and Sabah, the two states of east Malaysia became the target of P. knowlesi research due to prevalence of cases with occasional fatal infections. The host species of P. knowlesi are three macaque species namely Macaca fascicularis, Macaca nemestrina and Macaca leonina while the vector species are the Leucosphyrus Complex and the Dirus Complex of the Leucophyrus Group of Anopheles mosquitoes. Rapid diagnostic tests (RDT) are non-existent for knowlesi malaria although timely treatment is necessary for preventing complications, fatality and drug resistance. Development of RDT is essential in dealing with P. knowlesi infections in poor rural healthcare services. Genetic studies of the parasite on possibility of human-to-human transmission of P. knowlesi were recommended for further studies.
    Matched MeSH terms: Monkey Diseases/parasitology
  3. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
    Matched MeSH terms: Monkey Diseases/parasitology*
  4. Teo SZ, Tuen AA, Madinah A, Aban S, Chong YL
    Trop Biomed, 2019 Sep 01;36(3):594-603.
    PMID: 33597481
    Gastrointestinal nematodes can cause assorted health problems to human and other primates. The status of gastrointestinal nematodes in non-human primates remained less documented in Malaysia. This study aimed to determine the occurrence of gastrointestinal nematodes recovered from the fecal samples of captive non-human primates at the Matang Wildlife Centre (MWC), Sarawak. Fresh fecal samples were collected from 60 non-human primates of six species (i.e. Orangutan, Bornean gibbon, Silvered Leaf monkey, Slow loris, Pig-tailed macaque, and Long-tailed macaque) and processed using simple fecal floatation method and fecal sedimentation method. This study shows high prevalence of nematode infection (>=50%) and co-infection (22 from 45 infected individuals) in all species of captive non-human primates found in MWC, except one individual of young Silvered Leaf monkey was negative for nematode. From these, eight genera of 11 species and one unknown nematode larvae were recovered and among them Oesophagostomum sp., Ascaris sp., and Strongyloides sp. were the most common nematodes infecting the non-human primates. All the Bornean gibbon (n=7) were found to be infected with nematodes. Moreover, Long-tailed macaques at the centre were heavily infected by Ascaris sp. (number of total count, nt = 2132; total mean abundance, MA=113.70). This is the first report of high prevalence nematode infection on multiple species of captive non-human primates in a wildlife centre located in Sarawak. Some of the nematodes are of zoonotic potential. This information is important for health care management, both in-situ and ex-situ conservations of captive and free-ranging nonhuman primates.
    Matched MeSH terms: Monkey Diseases/parasitology*
  5. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Monkey Diseases/parasitology*
  6. Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al.
    Infect Genet Evol, 2016 06;40:243-252.
    PMID: 26980604 DOI: 10.1016/j.meegid.2016.03.009
    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes.
    Matched MeSH terms: Monkey Diseases/parasitology*
  7. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Monkey Diseases/parasitology
  8. Sabbatani S, Fiorino S, Manfredi R
    Braz J Infect Dis, 2010 May-Jun;14(3):299-309.
    PMID: 20835518
    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological network. In parallel with epidemiological and health care policy studies, also an accurate appraisal of the clinical features of P. knowlesi-affected patients will be strongly needed, since some preliminary experiences seem to show an increased disease severity, associated with increased parasitemia, in parallel with the progressive increase of inter-human infectious passages of this emerging Plasmodium.
    Matched MeSH terms: Monkey Diseases/parasitology*
  9. Rain AN, Mak JW, Zamri R
    PMID: 8266247
    Matched MeSH terms: Monkey Diseases/parasitology
  10. Narama I, Tsuchitani M, Umemura T, Tsuruta M
    J Comp Pathol, 1983 Apr;93(2):195-203.
    PMID: 6863609
    The histopathology of gastric papillomas in 17 crab-eating monkeys from Indonesia and Malaysia was investigated. The changes in the affected mucosa consisted of papillomatous proliferation with accidental heterotopia, desquamation or necrosis of the epithelium associated with eggs or adults of the small nematode Nochtia nochti, inflammatory cell infiltration and haemorrhage or oedema and fibrosis. The primary pathogenic effect of this parasite was due to its irritant action on the gastric mucosa. Hyper-regeneration, with a downward shift of the proliferating zone in the gastric gland and an inflammatory process, appeared to play a significant role in the morphogenesis of this lesion. It is concluded that the gastric papilloma associated with Nochtia nochti in the monkey is a parasitic inflammatory polyp.
    Matched MeSH terms: Monkey Diseases/parasitology*
  11. Narama I, Miura K, Tsuruta M, Tsuchitani M
    Vet Pathol, 1985 Jul;22(4):355-62.
    PMID: 4035940
    Splenic nodules from 38 cynomolgus monkeys (Macaca fascicularis) which were captured in Malaysia and Indonesia were studied histologically. The lesions were characterized by well-circumscribed focal fibrosis, accumulation of eosinophils and histiocytes, hemorrhage or hemosiderosis, and loss of normal splenic architecture. Small arteries in the lesion frequently had intimal thickening and narrowing of the lumen in addition to the presence of microfilariae. Microfilariae were also seen in the extravascular area of the lesion, and were occasionally engulfed by multinucleated giant cells. The splenic lesion was thought to have been initiated by incomplete infarction caused by intimal thickening and microfilarial occupation of the small arteries.
    Matched MeSH terms: Monkey Diseases/parasitology
  12. Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al.
    Parasit Vectors, 2016 Apr 28;9:242.
    PMID: 27125995 DOI: 10.1186/s13071-016-1527-0
    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

    METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class.

    RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

    CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

    Matched MeSH terms: Monkey Diseases/parasitology*
  13. Mak JW, Inder-Singh, Yen PK, Yap LF
    PMID: 6773151
    Matched MeSH terms: Monkey Diseases/parasitology*
  14. Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, et al.
    PLoS Negl Trop Dis, 2021 Jan;15(1):e0009110.
    PMID: 33493205 DOI: 10.1371/journal.pntd.0009110
    Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
    Matched MeSH terms: Monkey Diseases/parasitology*
  15. Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, Conway DJ, et al.
    PLoS Pathog, 2011 Apr;7(4):e1002015.
    PMID: 21490952 DOI: 10.1371/journal.ppat.1002015
    Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.
    Matched MeSH terms: Monkey Diseases/parasitology
  16. Klaus A, Strube C, Röper KM, Radespiel U, Schaarschmidt F, Nathan S, et al.
    PLoS One, 2018;13(4):e0195584.
    PMID: 29630671 DOI: 10.1371/journal.pone.0195584
    Understanding determinants shaping infection risk of endangered wildlife is a major topic in conservation medicine. The proboscis monkey, Nasalis larvatus, an endemic primate flagship species for conservation in Borneo, is endangered through habitat loss, but can still be found in riparian lowland and mangrove forests, and in some protected areas. To assess socioecological and anthropogenic influence on intestinal helminth infections in N. larvatus, 724 fecal samples of harem and bachelor groups, varying in size and the number of juveniles, were collected between June and October 2012 from two study sites in Malaysian Borneo: 634 samples were obtained from groups inhabiting the Lower Kinabatangan Wildlife Sanctuary (LKWS), 90 samples were collected from groups of the Labuk Bay Proboscis Monkey Sanctuary (LBPMS), where monkeys are fed on stationary feeding platforms. Parasite risk was quantified by intestinal helminth prevalence, host parasite species richness (PSR), and eggs per gram feces (epg). Generalized linear mixed effect models were applied to explore whether study site, group type, group size, the number of juveniles per group, and sampling month predict parasite risk. At the LBPMS, prevalence and epg of Trichuris spp., strongylids, and Strongyloides spp. but not Ascaris spp., as well as host PSR were significantly elevated. Only for Strongyloides spp., prevalence showed significant changes between months; at both sites, the beginning rainy season with increased precipitation was linked to higher prevalence, suggesting the external life cycle of Strongyloides spp. to benefit from humidity. Higher prevalence, epgs, and PSR within the LBPMS suggest that anthropogenic factors shape host infection risk more than socioecological factors, most likely via higher re-infection rates and chronic stress. Noninvasive measurement of fecal parasite stages is an important tool for assessing transmission dynamics and infection risks for endangered tropical wildlife. Findings will contribute to healthcare management in nature and in anthropogenically managed environments.
    Matched MeSH terms: Monkey Diseases/parasitology*
  17. Kan SP, Prathap K, Dissanaike AS
    Am J Trop Med Hyg, 1979 Jul;28(4):634-42.
    PMID: 111569
    The ultrastructure of the cyst wall and zoites of a species of Sarcocystis from the skeletal muscles of a naturally-infected Malaysian long-tailed monkey, Macaca fascicularis, is described in detail. The wavy, electron-dense primary cyst wall is thin (55 nm) and invaginated. Cytophaneres are absent. The ground substance contains electron-dense granules and bundles of parallel, fibrillar elements in some areas. Thin trabeculae are present. The zoites measure 1.2 X 4.7 microns and have an interior conoid, 22 subpellicular microtubules, 50-60 micronemes, 4-6 rhoptries, and a posteriorly situated nucleus. Some ultrastructural aspects of the cyst wall and the zoites of this parasite resemble those of Sarcocystis species of the moonrat, rhesus monkey, tamarin, and baboon. The light microscopic appearance of this species from M. fascicularis also bears some resemblance to that of parasites from the four cases of human Sarcocystis reported in Malaysia. The cyst in all these human cases were thin-walled, with no cytophaners. Although the final hosts of these species of Sarcocystis are not known, it is quite possible that man, monkeys, and perhaps the moonrat (an insectivore) may serve as common intermediate hosts for one or several species of Sarcocystis.
    Matched MeSH terms: Monkey Diseases/parasitology*
  18. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
    Matched MeSH terms: Monkey Diseases/parasitology
  19. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
    Matched MeSH terms: Monkey Diseases/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links