Displaying publications 1 - 20 of 188 in total

Abstract:
Sort:
  1. El Yadini A, Elouafy Y, Amiri-Ardekani E, Shafiee M, Firouzi A, Sasani N, et al.
    Molecules, 2023 Feb 10;28(4).
    PMID: 36838696 DOI: 10.3390/molecules28041708
    Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as "R'tam", is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery.
    Matched MeSH terms: Polyphenols/pharmacology
  2. Kamaruzzaman MA, Chin KY, Mohd Ramli ES
    PMID: 31641368 DOI: 10.1155/2019/8543618
    Bone remodelling is a complex and tightly regulated process. Disruption of bone remodelling skewing towards resorption will cause osteoporosis and increase the risk of fragility fracture. Honey is a natural product containing various bioactive ingredients with health benefits, especially polyphenols. Therefore, honey may be a novel dietary supplement to prevent osteoporosis. This review aims to summarize the current evidence on the effects of honey on bone health. The evidence reported so far indicates a skeletal-beneficial effect of honey in animal models of osteoporosis. However, the number of studies on humans is limited. Honey can protect the bone via its antioxidant and anti-inflammatory properties, primarily through its polyphenol content that acts upon several signalling pathways, leading to bone anabolic and antiresorptive effects. In conclusion, honey is a potential functional food for bone health, but the dose and the bioactive contents of honey need to be verified prior to its application in humans.
    Matched MeSH terms: Polyphenols
  3. Manali Haniti, M.Z., Norazrina, A., Chan, K.M.
    Medicine & Health, 2018;13(2):3-19.
    MyJurnal
    Neurodegenerative diseases commonly affect elderly population and are characterised by progressive neuronal loss. Oxidative stress is highly associated with neurodegeneration. The targeted herbal plant in this review, Ocimum basilicum (O. basilicum), is typically used in Indochina and Italian cuisine. Pharmacological studies on O. basilicum have demonstrated potent antioxidant activities with some reports of neuroprotective actions. This brief review highlights the potential neuroprotective roles of O. basilicum by discussing previously documented antioxidative actions of the plant extract, essential oils and its phytochemical compounds on the nervous system based on in vitro and in vivo studies. Accumulating evidence on the neuroprotective action of O. basilicum points to a notion that neuroprotection is made possible by way of its antioxidant properties and largely due to the presence of polyphenol compounds such as rosmarinic acid which has been identified as the major constituent. Although the mechanisms of O. basilicum antioxidant action have been proposed, further studies are required for better understanding of its antioxidant action leading to neuroprotective roles. It is also possible that the antioxidant actions of O. basilicum are mediated through synergism of a mixture of various naturally-occurring bioactive compounds in the plant, as is with many other plant-based food supplements, to produce the putative effects instead of a single bioactive compound from the plant. Therefore, specific targeting of neuroprotection by means of antioxidant actions warrants further preclinical and clinical studies investigating the therapeutic potentials of O. basilicum particularly in view of the prevention of neurodegenerative processes.
    Matched MeSH terms: Polyphenols
  4. Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, et al.
    J Nanobiotechnology, 2024 Feb 19;22(1):71.
    PMID: 38373982 DOI: 10.1186/s12951-024-02332-8
    Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
    Matched MeSH terms: Polyphenols/pharmacology
  5. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Polyphenols/pharmacology*
  6. Murphy N, Achaintre D, Zamora-Ros R, Jenab M, Boutron-Ruault MC, Carbonnel F, et al.
    Int J Cancer, 2018 Oct 01;143(7):1620-1631.
    PMID: 29696648 DOI: 10.1002/ijc.31563
    Polyphenols have been shown to exert biological activity in experimental models of colon cancer; however, human data linking specific polyphenols to colon cancer is limited. We assessed the relationship between pre-diagnostic plasma polyphenols and colon cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition study. Using high pressure liquid chromatography coupled to tandem mass spectrometry, we measured concentrations of 35 polyphenols in plasma from 809 incident colon cancer cases and 809 matched controls. We used multivariable adjusted conditional logistic regression models that included established colon cancer risk factors. The false discovery rate (qvalues ) was computed to control for multiple comparisons. All statistical tests were two-sided. After false discovery rate correction and in continuous log2 -transformed multivariable models, equol (odds ratio [OR] per log2 -value, 0.86, 95% confidence interval [95% CI] = 0.79-0.93; qvalue  = 0.01) and homovanillic acid (OR per log2 -value, 1.46, 95% CI = 1.16-1.84; qvalue  = 0.02) were associated with colon cancer risk. Comparing extreme fifths, equol concentrations were inversely associated with colon cancer risk (OR = 0.61, 95% CI = 0.41-0.91, ptrend  = 0.003), while homovanillic acid concentrations were positively associated with colon cancer development (OR = 1.72, 95% CI = 1.17-2.53, ptrend  
    Matched MeSH terms: Polyphenols/blood*
  7. Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, et al.
    Bioengineering (Basel), 2019 Apr 16;6(2).
    PMID: 30995765 DOI: 10.3390/bioengineering6020033
    To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C-H, C-O, and C=C bond exists in the bio-char of the sample.
    Matched MeSH terms: Polyphenols
  8. Rahman MA, Islam MS
    Pharmacogn Rev, 2015 Jan-Jun;9(17):55-62.
    PMID: 26009694 DOI: 10.4103/0973-7847.156350
    Alpinia calcarata Roscoe (Family: Zingiberaceae), is a rhizomatous perennial herb, which is commonly used in the traditional medicinal systems in Sri Lanka. Alpinia calcarata is cultivated in tropical countries, including Sri Lanka, India, and Malaysia. Experimentally, rhizomes of Alpinia calcarata are shown to possess antibacterial, antifungal, anthelmintic, antinociceptive, anti-inflammatory, antioxidant, aphrodisiac, gastroprotective, and antidiabetic activities. Phytochemical screening revealed the presence of polyphenols, tannins, flavonoids, steroid glycosides and alkaloids in the extract and essential oil of this plant. Essential oil and extracts from this plant have been found to possess wide range of pharmacological and biological activities. This article provides a comprehensive review of its ethnomedical uses, chemical constituents and the pharmacological profile as a medicinal plant. Particular attention has been given to the pharmacological effects of the essential oil of Alpinia calcarata in this review so that the potential use of this plant either in pharmaceutics or as an agricultural resource can be evaluated.
    Matched MeSH terms: Polyphenols
  9. Abd Samat NMA, Ahmad S, Awang Y, Bakar RAH, Hakiman M
    Molecules, 2020 Jun 19;25(12).
    PMID: 32575450 DOI: 10.3390/molecules25122833
    Sabah snake grass or Clinacanthus nutans has drawn public interest having significant economic benefits attributable to the presence of phytochemicals and several interesting bioactive constituents that may differ according to harvesting age and harvesting frequency. The current study was aimed to evaluate the effect of harvesting age and harvesting frequency towards herbal yield, antioxidant activities, phytochemicals synthesis, and bioactive compounds of C. nutans. A factorial randomized completely block design with five replications was used to illustrate the relationship between herbal yield, DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays, total phenolic and flavonoid content affected by harvesting age (week 8, 12, and 16 after transplanting), and harvesting frequency (harvest 1, 2, and 3). The bioactive compounds by HPLC were also determined to describe the interaction effect between both harvesting age and harvesting frequency. The yield, antioxidant activities, and phytochemical contents were gradually increased as the plant grew, with the highest recorded during week 16. However, the synthesis and activities of phytochemicals were reduced in subsequent harvests despite the increment of the herbal yield. All bioactive compounds were found to be influenced insignificantly and significantly by harvesting age and harvesting frequency, respectively, specifically to shaftoside, iso-orientin, and orientin. Among all constituents, shaftoside was the main compound at various harvesting ages and harvesting frequencies. These results indicated that harvesting at week 16 with 1st harvest frequency might enhance the yield while sustaining the high synthesis of polyphenols and antioxidant activities of C. nutans.
    Matched MeSH terms: Polyphenols
  10. Mustaffa F, Indurkar J, Ismail S, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Mar;2(2):76-81.
    PMID: 21808545 DOI: 10.4103/0974-8490.62952
    Cinnomomum iners standardized leaves methanolic extract (CSLE) was subjected to analgesic, toxicity and phytochemical studies. The analgesic activity of CSLE was evaluated using formalin, hot plate and tail flick tests at doses of 100, 200 and 500 mg/kg. CSLE showed significant activity (P < 0.05) in the formalin model (late phase) on the rats at doses of 200 and 500 mg/kg. However, CSLE did not show activity in the hot plate and tail flick tests. The results obtained suggest that CSLE acts peripherally to relieve pain. For the toxicity study, CSLE was orally administered to the Swiss albino mice according to the Organization for Economic Co-Operation and Development (OECD) guideline 423. There was no lethality or toxic symptoms observed for all the tested doses throughout the 14-day period. Phytochemical screening of CSLE showed the presence of cardiac glycoside, flavonoid, polyphenol, saponin, sugar, tannin and terpenoid.
    Matched MeSH terms: Polyphenols
  11. Shafaei A, Aisha AF, Siddiqui MJ, Ismail Z
    Pharmacognosy Res, 2015 Jan-Mar;7(1):32-7.
    PMID: 25598632 DOI: 10.4103/0974-8490.147196
    Ficus deltoidea (FD) is one of the native plants widely distributed in several countries in Southeast Asia. Previous studies have shown that FD leaf possess antinociceptive, wound healing and antioxidant properties. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids and flavonoids.
    Matched MeSH terms: Polyphenols
  12. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Polyphenols
  13. Rohazila Mohamad Hanafiah, Siti Nor Asma Musa, Siti Aisyah Abd Ghafar
    MyJurnal
    Introduction: Silver nanoparticles has been proven to be an effective agent for antimicrobial efficacy against bacte-ria, viruses and other eukaryotic microorganisms. Green synthesis is one of the methods that has been developed to synthesize silver nanoparticles in environmentally-friendly conditions. It uses plant extracts as reducing and capping agents. Besides act as reducing and capping agents, bioactives such as phenolic compounds may bind to silver nanoparticles and enhance its medicinal properties. Strobilanthes crispus is a Malaysian native plant. Previous stud-ies had shown that S. crispus contains polyphenols, catechins, alkaloids, caffeine, tannins and vitamins. Therefore, the aim of this study is to determine antibacterial activities of silver nanoparticles-Strobilanthes crispus (AgNP-SC) against clinically important pathogens such as Escherichia coli, Pseudomonas aeruginosa and Streptococcus mutans. Methods: The disc diffusion assay (DDA) was performed to investigate the inhibition zone of AgNps-Sc towards E. coli, P. aeruginosa and S. mutans. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) was used to determine bactericidal/bacteriostatic profile of AgNP- SC against E. coli, P. aeruginosa and S. mu-tans. Results: AgNP-SC (40mg/mL) shows the greatest inhibition properties (12.67±0.6mm) against S. mutans when compared to Strobilanthes crispus leaves extract (6.0±0.001mm) and blank silver nanoparticles (6.0±0.001mm). MIC values for AgNP-SC against S. mutans and E. coli were at 0.625 mg/mL and 1.25 mg/mL, respectively. Whereas the MIC value of AgNP- SC against P. aeruginosa was at 2.5 mg/mL. MBC values of AgNP-SC against E. coli, P. aerugino-sa and S. mutans were at 1.25, 2.5 mg/mL respectively. Results are concentration-dependent, with higher concentra-tion demonstrating better inhibition property. Conclusion: It can be concluded that AgNP-SC possesses bactericidal properties against S. mutans, E. coli and P. aeruginosa.
    Matched MeSH terms: Polyphenols
  14. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: Polyphenols/pharmacology*
  15. Swamy MK, Sinniah UR, Ghasemzadeh A
    Appl Microbiol Biotechnol, 2018 Sep;102(18):7775-7793.
    PMID: 30022261 DOI: 10.1007/s00253-018-9223-y
    Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
    Matched MeSH terms: Polyphenols
  16. Lee SH, Jaganath IB, Wang SM, Sekaran SD
    PLoS One, 2011;6(6):e20994.
    PMID: 21698198 DOI: 10.1371/journal.pone.0020994
    Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells.
    Matched MeSH terms: Polyphenols
  17. Ahmed R, Tanvir EM, Hossen MS, Afroz R, Ahmmed I, Rumpa NE, et al.
    PMID: 28261310 DOI: 10.1155/2017/5370545
    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
    Matched MeSH terms: Polyphenols
  18. Torey A, Sasidharan S, Latha LY, Sudhakaran S, Ramanathan S
    Pharm Biol, 2010 Oct;48(10):1119-23.
    PMID: 20738154 DOI: 10.3109/13880200903490505
    To investigate the in vitro antioxidant activity of methanol extracts of Ixora coccinea L. (Rubiaceae) flower, leaf and stem.
    Matched MeSH terms: Polyphenols
  19. Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS
    Biomed Res Int, 2013;2013:604787.
    PMID: 24078922 DOI: 10.1155/2013/604787
    In the present study, we evaluated the effect of brown seaweeds Sargassum muticum methanolic extract (SMME), against MCF-7 and MDA-MB-231 breast cancer cell lines proliferation. This algae extract was also evaluated for reducing activity and total polyphenol content. The MTT assay results indicated that the extracts were cytotoxic against breast cancer cell lines in a dose-dependent manner, with IC50 of 22 μg/ml for MCF-7 and 55 μg/ml for MDA-MB-231 cell lines. The percentages of apoptotic MCF-7-treated cells increased from 13% to 67% by increasing the concentration of the SMME. The antiproliferative efficacy of this algal extract was positively correlated with the total polyphenol contents, suggesting a causal link related to extract content of phenolic acids. Cell cycle analysis showed a significant increase in the accumulation of SMME-treated cells at sub-G1 phase, indicating the induction of apoptosis by SMME. Further apoptosis induction was confirmed by Hoechst 33342 and AO/PI staining. Also SMME implanted in vivo into fertilized chicken eggs induced dose-related antiangiogenic activity in the chorioallantoic membrane (CAM). Our results imply a new insight on the novel function of Sargassum muticum polyphenol-rich seaweed in cancer research by induction of apoptosis, antioxidant, and antiangiogenesis effects.
    Matched MeSH terms: Polyphenols/pharmacology*; Polyphenols/therapeutic use
  20. Kong KW, Abdul Aziz A, Razali N, Aminuddin N, Mat Junit S
    PeerJ, 2016;4:e2379.
    PMID: 27635343 DOI: 10.7717/peerj.2379
    Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking.
    Matched MeSH terms: Polyphenols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links