Displaying publications 1 - 20 of 337 in total

Abstract:
Sort:
  1. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  2. Othman N, Nagoor NH
    Int J Oncol, 2017 Dec;51(6):1757-1764.
    PMID: 29075783 DOI: 10.3892/ijo.2017.4174
    Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/genetics*; Proto-Oncogene Proteins c-akt/metabolism
  3. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: Proto-Oncogene Proteins c-myb/genetics
  4. Ahmad AH, Ismail Z
    Malays J Med Sci, 2002 Jan;9(1):3-8.
    PMID: 22969311 MyJurnal
    The discovery that c-fos, a proto-oncogene, has a role in pain, has triggered extensive research on the consequences of c-fos expression. It has been shown that c-fos, through its protein form, FOS, leads to expression of dynorphin gene and subsequently dynorphin protein which is implicated in the development of a pain state. This mini review looks at the properties of c-fos and the consequences of its expression following noxious (painful) stimulation.
    Matched MeSH terms: Proto-Oncogene Proteins c-fos
  5. Bu-Hui L, Mei-Zi W, Wei S, Yi-Gang W, Wei WU, Qi-Jun F, et al.
    Zhongguo Zhong Yao Za Zhi, 2020 Oct;45(20):4805-4811.
    PMID: 33350250 DOI: 10.19540/j.cnki.cjcmm.20200630.602
    Hypoxia-inducible factors(HIFs)are the key transcription factors that sense and regulate cellular oxygen concentration in vivo. HIF-1 is composed of 2 subunits,α and β,in which,the molecular regulatory mechanism of HIF-1α involves the main processes of its degradation and activation. The degradation of HIF-1α is regulated by oxygen-dependent pathways,including "von hippel-lindau protein(pVHL)-dependent pathway" and "pVHL-independent pathway". The activation of HIF-1α is regulated by oxygen-independent pathways,including mammalian target of rapamycin(mTOR)/eukaryotic initiation factor 4 E-binding protein 1(4 EBP1)/HIF-1α pathway,phosphatidylinositol 3-kinase(PI3 K)/proteirrserinc-threonine kinases(Akt)/HIF-1α pathway and silent information regulator1(Sirt1)/HIF-1α pathway. In recent years,based on the molecular regulatory mechanism of HIFs,Roxadustat,a new drug for the treatment of renal anemia has been developed. Besides, some macromolecular substances with similar pharmacological effect to HIFs have been found in the extracts from Chinese herbal medicine(CHM),such as emodin,notoginseng triterpenes,honokiol and clematichinenoside. These natural macromolecular substances play the regulatory roles in inflammatory response,epigenetic modification and auto-phagy. It is worth noting that,for common hypoxic-related diseases including diabetic kidney disease,HIFs-mediated "pyroptosis" may be a new target of CHMs for clearing dampness and heat and its representative classical prescriptions(Ermiao Pills)in treating inflammatory injury in cells and tissues.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt
  6. Kadivar A, Noordin MI, Aditya A, Kamalidehghan B, Davoudi ET, Sedghi R, et al.
    Int J Mol Med, 2019 05;43(5):2259.
    PMID: 30864679 DOI: 10.3892/ijmm.2019.4119
    An interested reader drew to our attention that the above study appeared to contain a high level of overlap with an article by the same authors published in the journal Drug Design, Development and Therapy [Kadivar A, Kamalidehghan B, Akbari Javar H, Karimi B, Sedghi R and Noordin MI: Antiproliferation effect of imatinib mesylate on MCF7, T‑47D tumorigenic and MCF 10A nontumorigenic breast cell lines via PDGFR‑β, PDGF‑BB, c‑Kit and SCF genes. Drug Des Devel Ther 11: 469‑481, 2017]. Following an internal investigation and also in liaison with the authors, it was established that, although the studies were conducted along broadly similar lines, the papers contained entirely different data involving two different subsets of cell lines; the submission to Drug Des Devel Ther aimed to explore the effects of imatinib mesylate on three different groups, with each group being represented by a cell line, whereas the submission to Int J Mol Med explored the effectiveness of imatinib mesylate in breast cancer cell lines. In spite of this, considering the relatedness of the articles and the fact that the paper to Drug Des Devel Ther was submitted first and published while the Int J Mol Med paper was passing through the peer‑review process, the authors concede that they should have properly referenced their paper submitted to Drug Des Devel Ther in the Int J Mol Med paper. Note that the publishers of Drug Des Devel Ther, with whom we were liaising, agreed with the decision to issue a Corrigendum for this paper that acknowledges the article published in Drug Des Devel Ther. The authors regret their failure to acknowledge the related paper in this instance, and apologize to the readership for this oversight. [the original article was published in International Journal of Molecular Medicine 14: 414‑424, 2018; DOI: 10.3892/ijmm.2018.3590].
    Matched MeSH terms: Proto-Oncogene Proteins c-kit
  7. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
    Matched MeSH terms: Proto-Oncogene Proteins
  8. Haque MA, Jantan I, Harikrishnan H
    Int Immunopharmacol, 2018 Feb;55:312-322.
    PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001
    Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  9. Ismail N, Pihie AH, Nallapan M
    Anticancer Res, 2005 May-Jun;25(3B):2221-7.
    PMID: 16158967
    Xanthorrhizol is a sesquiterpenoid compound extracted from Curcuma xanthorrhiza, which is known locally as Temulawak. Traditionally, C. xanthorrhiza was found to have antibacterial, anticancer and anti-inflammatory activity. The rhizome has also been used to treat inflammation in postpartum uterine bleeding. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the cervical cancer cell line HeLa with an EC50 value of 6.16 microg/ml. Xanthorrhizol significantly increased apoptosis in HeLa cells, as evaluated by the Tdt-mediated dUTP nick end-labelling (TUNEL) assay and nuclear morphology by Hoechst 33258 staining. Western blot analysis, which was further confirmed by the immunostaining results, implied an up-regulation of tumor suppressor protein p53 and the pro-apoptotic protein Bax, following the treatment with xanthorrhizol. Xanthorrhizol, however, did not affect the expression of the anti-apoptotic protein, Bcl-2 and the viral oncoprotein, E6. Hence, xanthorrhizol is a promising antiproliferative and anticancer agent which induces p53 and Bax-dependent apoptosis in HeLa cervical cancer cells.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/biosynthesis*; Proto-Oncogene Proteins c-bcl-2/genetics
  10. Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY, Azimahtol Hawariah LP
    Biochem Biophys Res Commun, 2012 Apr 20;420(4):834-8.
    PMID: 22465013 DOI: 10.1016/j.bbrc.2012.03.083
    Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X(L) expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism*
  11. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
    Matched MeSH terms: Proto-Oncogene Proteins/metabolism*
  12. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: Proto-Oncogene Proteins c-fos/genetics; Proto-Oncogene Proteins c-fos/metabolism*
  13. Chaudhry GE, Jan R, Naveed Zafar M, Mohammad H, Muhammad TST
    Asian Pac J Cancer Prev, 2019 Dec 01;20(12):3555-3562.
    PMID: 31870094 DOI: 10.31557/APJCP.2019.20.12.3555
    OBJECTIVE: Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D.

    METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method.

    RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of  Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of  Bax and down-regulation of Bcl-2 protein.  Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
    .

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  14. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, et al.
    Nutrients, 2019 Oct 19;11(10).
    PMID: 31635074 DOI: 10.3390/nu11102525
    This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer's disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/genetics; Proto-Oncogene Proteins c-akt/metabolism*
  15. Masir N, Jones M, Abdul-Rahman F, Florence CS, Mason DY
    Pathology, 2012 Apr;44(3):228-33.
    PMID: 22406486 DOI: 10.1097/PAT.0b013e3283513fb2
    The hallmark of follicular lymphoma is the t(14;18)(q32;q21) chromosomal translocations that lead to deregulation of BCL2 expression in tumour cells. However, not all cases of follicular lymphoma express BCL2, nor is the t(14;18) translocation always present. Follicular lymphomas lacking the BCL2 rearrangement are less well studied with regards to their immunohistochemical and molecular features. This study aims to investigate the BCL2 protein expression pattern in t(14;18) negative follicular lymphomas.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics*; Proto-Oncogene Proteins c-bcl-2/metabolism
  16. Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, et al.
    Genet. Mol. Res., 2016 Jun 17;15(2).
    PMID: 27323195 DOI: 10.4238/gmr.15028150
    Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia. Neonatal cardiomyocytes were isolated from 0- to 2-day-old Sprague Dawley rats, and given 100 μM CoCl2, 150 μM H2O2, or placed in a hypoxia chamber for 24 h. The ameliorative effects of 100-μM UDCA treatment for 12 h were then assessed using MTS, QuantiGene Plex (for Smpd1 and Smpd2), and SMase assays, beating rate assessment, and western blotting (for ERK and Akt). Data were analyzed by the paired Student t-tests and one-way analyses of variance. Cell viability decreased significantly after H2O2 (85%), CoCl2 (50%), and hypoxia chamber (52%) treatments compared to the untreated control (100%). UDCA significantly counteracted the effects of chamber- and CoCl2- induced hypoxia on viability and beating rate. However, no significant differences were observed in acid SMase gene and protein expression between the untreated, CoCl2, and UDCA-CoCl2 groups. In contrast, neutral SMase gene and protein expression did significantly differ between the latter two groups. ERK and Akt phosphorylation was higher in hypoxic cardiomyocytes treated with UDCA than those given CoCl2 alone. In conclusion, UDCA regulates the activation of survival signaling proteins and SMases in neonatal rat cardiomyocytes during hypoxia.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism*
  17. Phan CW, David P, Wong KH, Naidu M, Sabaratnam V
    PLoS One, 2015;10(11):e0143004.
    PMID: 26565787 DOI: 10.1371/journal.pone.0143004
    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  18. Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, et al.
    Pathol Res Pract, 2023 Sep;249:154736.
    PMID: 37579591 DOI: 10.1016/j.prp.2023.154736
    Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  19. Mohd Fauzi F, John CM, Karunanidhi A, Mussa HY, Ramasamy R, Adam A, et al.
    J Ethnopharmacol, 2017 Feb 02;197:61-72.
    PMID: 27452659 DOI: 10.1016/j.jep.2016.07.058
    ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied.

    MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR.

    RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA.

    CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.

    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  20. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
    Matched MeSH terms: Proto-Oncogene Proteins c-myc/genetics; Proto-Oncogene Proteins c-myc/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links