Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Raji AA, Alaba PA, Yusuf H, Abu Bakar NH, Mohd Taufek N, Muin H, et al.
    Res Vet Sci, 2018 Aug;119:67-75.
    PMID: 29864632 DOI: 10.1016/j.rvsc.2018.05.013
    This study explored fishmeal replacement with two freshwater microalgae: Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet. The effect of inclusion of the two microalgae on biomarkers of oxidative stress, haematological parameters, enzyme activities and growth performance were investigated. The juvenile fish were given 3 distinct treatments with isonitrogenous (35.01-36.57%) and isoenergetic (417.24-422.27 Kcal 100 g-1) diets containing 50% S. platensis (50SP), 75% S. platensis (75SP), 50% C. vulgaris (50CL), 75% C. vulgaris (75CL) and 100% fishmeal (100% FM) was used as the control diet. The result shows that all the diets substituted with both S. platensis, and C. vulgaris boosted the growth performance based on specific growth rate (SGR) and body weight gain (BDWG) when compared with the control diet. The feed conversion ratio (FCR) and protein efficiency ratio (PER) was significantly influenced by all the supplementations. The haematological analysis of the fish shows a significant increase in the value of red and white blood cells upon supplementation with 50SP and 50CL but decrease slightly when increased to 75SP and 75CL. Furthermore, the value of haematocrit and haemoglobin also increased upon supplementation with 50SP and 50CL but decrease slightly when increased to 75SP and 75CL. The white blood cell (WBC), red blood cell (RBC) increased, while total cholesterol (TCL), and Plasma glucose levels decreased significantly upon supplementation of algae. This is a clear indication that S. platensis and C. vulgaris are a promising replacement for fishmeal, which is a source protein in the C. gariepinus diet.
    Matched MeSH terms: Spirulina/physiology*
  2. Sarkar P, Lite C, Kumar P, Pasupuleti M, Saraswathi NT, Arasu MV, et al.
    Int J Biol Macromol, 2020 Oct 31.
    PMID: 33137391 DOI: 10.1016/j.ijbiomac.2020.10.222
    The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 μM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 μM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 μM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 μM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.
    Matched MeSH terms: Spirulina
  3. Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    Cell Biol Int, 2020 Nov;44(11):2231-2242.
    PMID: 32716104 DOI: 10.1002/cbin.11431
    This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
    Matched MeSH terms: Spirulina/genetics; Spirulina/metabolism*
  4. Ng IS, Tang MSY, Show PL, Chiou ZM, Tsai JC, Chang YK
    Int J Biol Macromol, 2019 Jul 01;132:615-628.
    PMID: 30940588 DOI: 10.1016/j.ijbiomac.2019.03.235
    In this work, a chitosan-modified nanofiber membrane was fabricated and used to examine the permeation characteristics of C-phycocyanin (CPC) obtained from Spirulina platensis. The effects of NaCl concentration (0.1-1.0 M), chitosan coupling pH (6-8), chitosan coupling concentration (0.1-3.0%), algal solution pH (6-8), algal mass concentration (0.1-1.0% dw/v), and membrane flux (4.08 × 10-2-2.04 × 10-1 mL/min·cm2) on the penetration performance of the membrane for CPC were investigated. The results show that the order of binding selectivity of the membrane for these proteins is contaminating proteins (TP) > allophycocyanin (APC) > CPC. TP and APC molecules were more easily adsorbed by the chitosan-modified membrane, and the CPC molecules most easily penetrated the membrane without being adsorbed, enhancing CPC purity. The purification factor and total mass flux were 3.3 fold and 66%, respectively, in a single step.
    Matched MeSH terms: Spirulina
  5. Chu, Wan-Loy
    MyJurnal
    Microalgae are important biological resources that have a wide range of biotechnological
    applications. Due to their high nutritional value, microalgae such as Spirulina and Chlorella are being mass cultured for health food. A variety of high-value products including polyunsaturated fatty acids (PUFA), pigments such as carotenoids and phycobiliproteins, and bioactive compounds are useful as nutraceuticals and pharmaceuticals, as well as for industrial applications. In terms of environmental biotechnology, microalgae are useful for bioremediation of agro-industrial wastewater, and as a biological tool for assessment and monitoring of environmental toxicants such as heavy metals, pesticides and pharmaceuticals. In recent years, microalgae have attracted much interest due to their potential use as feedstock for biodiesel production. In Malaysia, there has been active research on microalgal biotechnology for the past 30 years, tapping into the potential of our
    rich microalgal resources for high-value products and applications in wastewater treatment and assessment of environmental toxicants. A culture collection of microalgae has been established, and this serves as an important resource for microalgal biotechnology
    research. Microalgal biotechnology should continue to be regarded as a priority area of research in this country.
    Matched MeSH terms: Spirulina
  6. Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S
    EXCLI J, 2015;14:385-93.
    PMID: 27004048 DOI: 10.17179/excli2014-697
    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.
    Matched MeSH terms: Spirulina
  7. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Spirulina*
  8. Chang YK, Show PL, Lan JC, Tsai JC, Huang CR
    Bioresour Technol, 2018 Dec;270:320-327.
    PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138
    An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
    Matched MeSH terms: Spirulina/metabolism*; Spirulina/chemistry
  9. Hena S, Znad H, Heong KT, Judd S
    Water Res, 2018 01 01;128:267-277.
    PMID: 29107911 DOI: 10.1016/j.watres.2017.10.057
    Dairy cattle treated wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of Arthrospira platensis cultivated in dairy farm wastewater for biodiesel production. The biomass of Arthrospira platensis was found to be 4.98 g L-1 and produced 30.23 wt% lipids to dry biomass cultivated in wastewater which was found nitrogen stressed in photo bioreactor. The extracted lipid displayed a suitable fatty acid profile for biodiesel, although the content of linolenic acid was found a little higher than the standard EN14214. It was found that nitrogen stressed medium increase the total lipid content but temperature and intensities of light were the most important factors to control the quantity of linolenic acid and hence the quality of biodiesel, while the optimum CO2 helped to achieve maximum biomass and triacylglycerols. The Arthrospira platensis offer a good option for the treatment of wastewater before final discharge.
    Matched MeSH terms: Spirulina/growth & development; Spirulina/metabolism*; Spirulina/radiation effects
  10. Somchit MN, Mohamed NA, Ahmad Z, Zakaria ZA, Shamsuddin L, Omar-Fauzee MS, et al.
    Pak J Pharm Sci, 2014 Sep;27(5):1277-80.
    PMID: 25176383
    Spirulina spp. is a blue-green algae belongs to the family of Oscillatoriaceae, which having diverse biological activity. The aim of this current study was to evaluate and compare the anti-pyretic and anti-inflammatory activity of Spirulina platensis/SP and Spirulina lonar/SL extracts. In the anti-pyretic study, the ability to reduce the rectal temperature of rats induced pyrexia with 2g/kg Brewer's Yeast (BY) was performed. Rats were dosed either 2 or 4 mg/kg SP or SL. Rectal temperature was taken every hour for 8 hours. Results shown that there were significant dose-dependent (p<0.05) reduction of both treatments. However, SP treatment revealed faster reduction in rectal temperature. For anti-inflammatory activity, the reduction in the volume of paw edema induced by Prostaglandin E2 (100 IU/rat intraplantar) was measured. Rats were dosed orally with 2 or 4 mg/kg SP or SL. The paw edema was measured every 30 minutes for 4 hours using plethysmometer. Results had shown a significant dose dependent reduction in diameter of paw edema (p<0.05). The finding suggests that SP and SL extracts have anti-pyretic and anti-inflammatory properties. However, SP was found to be more effective than SL as anti-pyretic and anti-inflammatory agent.
    Matched MeSH terms: Spirulina*
  11. Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF
    Bioresour Technol, 2023 Apr;373:128743.
    PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743
    In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p 
    Matched MeSH terms: Spirulina*
  12. Mustafa N, Periyasamy P, Kamaruddin N
    Med J Malaysia, 2009 Sep;64(3):238-9.
    PMID: 20527277 MyJurnal
    Cushing's syndrome is a pathological condition associated with excessive cortisol production, the commonest etiology being Cushing's disease. Corticosteroids in high doses have been used in the management of Steven Johnson Syndrome (SJS) with favourable outcome. We describe a patient with Cushing's disease who developed SJS, one week after taking sperulina a product from sea-weed while waiting for transphenoidal surgery.
    Matched MeSH terms: Spirulina
  13. Kok YY, Chu WL, Phang SM, Mohamed SM, Naidu R, Lai PJ, et al.
    J Zhejiang Univ Sci B, 2011 May;12(5):335-45.
    PMID: 21528487 DOI: 10.1631/jzus.B1000336
    This study aimed to assess the inhibitory activities of methanol extracts from the microalgae Ankistrodesmus convolutus, Synechococcus elongatus, and Spirulina platensis against Epstein-Barr virus (EBV) in three Burkitt's lymphoma (BL) cell lines, namely Akata, B95-8, and P3HR-1. The antiviral activity was assessed by quantifying the cell-free EBV DNA using real-time polymerase chain reaction (PCR) technique. The methanol extracts from Ankistrodesmus convolutus and Synechococcus elongatus displayed low cytotoxicity and potent effect in reducing cell-free EBV DNA (EC(50)<0.01 µg/ml) with a high therapeutic index (>28000). After fractionation by column chromatography, the fraction from Synechococcus elongatus (SEF1) reduced the cell-free EBV DNA most effectively (EC(50)=2.9 µg/ml, therapeutic index>69). Upon further fractionation by high performance liquid chromatography (HPLC), the sub-fraction SEF1'a was most active in reducing the cell-free EBV DNA (EC(50)=1.38 µg/ml, therapeutic index>14.5). This study suggests that microalgae could be a potential source of antiviral compounds that can be used against EBV.
    Matched MeSH terms: Spirulina/chemistry
  14. Lai YH, Puspanadan S, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2798.
    PMID: 30828976 DOI: 10.1002/btpr.2798
    Present study aims to optimize the production of starch and total carbohydrates from Arthrospira platensis. Growing concerns toward unprecedented environmental issues associated with plastic pollution has created a tremendous impetus to develop new biomaterials for the production of bioplastic. Starch-based biopolymers from algae serve as sustainable feedstock for thermoplastic starch production due to their abundant availability and low cost. A. platensis was cultivated in Zarrouk's medium at 32 ± 1°C and exposed to red light with a photoperiod of 12:12 hr light/dark. Growth kinetics studies showed that the maximum specific growth rate (μmax ) obtained was 0.059 day-1 with the doubling time (td ) of 11.748 days. Subsequently, Zarrouk's medium with different concentrations of sulfur, phosphorus and nitrogen was prepared to establish the nutrient-limiting conditions to enhance the accumulation of starch and total carbohydrates. In this study, the highest starch accumulated was 6.406 ± 0.622 mg L-1 under optimized phosphorus limitation (0.025 g L-1 ) conditions. Nitrogen limitation (0.250 g L-1 ) results demonstrated significant influenced (p 
    Matched MeSH terms: Spirulina/growth & development; Spirulina/metabolism*; Spirulina/radiation effects
  15. Chu WL, Lim YW, Radhakrishnan AK, Lim PE
    BMC Complement Altern Med, 2010 Sep 21;10:53.
    PMID: 20858231 DOI: 10.1186/1472-6882-10-53
    BACKGROUND: Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals.

    METHODS: The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls).

    RESULTS: Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E.

    CONCLUSIONS: The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

    Matched MeSH terms: Spirulina*
  16. M KS, Alengaram UJ, Ibrahim S, Vello V, Phang SM
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25538-25558.
    PMID: 38478311 DOI: 10.1007/s11356-024-32784-2
    This study investigated the potential use of microalgae as partial cement replacement to heal cracks in cement mortar. Microbially induced calcite (CaCO3) precipitation (MICP) from Arthrospira platensis (A. platensis) (UMACC162) was utilised for crack-healing applications. Microalgae was cultivated in Kosaric Media (KM) together with filtered cement water (FCW), and used as a cement replacement material. The microalgal species was further evaluated for its capacity and adaptability towards large-scale culturing. The results showed that A. platensis could adapt and survive in cement water solution and cement mortar, suggesting the potential for self-healing in cement mortar. Further, the cultured species grown in both conditions (KM and KM & FCW) were harvested and incorporated into the cement mortar as a partial cement replacement material at different levels of 5%, 10%, 20%, and 30% of cement weight. The cement mortars partially replaced with microalgae were cured in water for 28 days. Pre-cracks were induced in the cured mortar with the 75% of their ultimate load. It took just 14 days for the microalgae-incorporated mortar to heal the cracks. The specimens with microalgae cultured in FCW showed a better performance and recovered 59% of their strength, with a maximum healed crack width of 0.7 mm. In terms of water tightness and porosity, they are comparable to the control mortar. The compressive strength measurements indicated the formation of calcite aggregate (crystal) that sealed the surface cracks, which was confirmed by a microstructural analysis. The results also demonstrate that the incorporation of microalgae into cement produced a self-healing effect, providing a new direction for crack healing. Additionally, the investigation indicated that replacing cement with microalgae reduced CO2 emissions by as much as 30%, with a substitution of 30% of microalgae. Exploring microalgae as a cement replacement could reduce carbon emissions and improve the state of the environment.
    Matched MeSH terms: Spirulina*
  17. Chu WL, Quynh le V, Radhakrishnan AK
    J Diet Suppl, 2013 Sep;10(3):229-40.
    PMID: 23927690 DOI: 10.3109/19390211.2013.822452
    The aim of this study was to investigate whether Spirulina (Arthrospira) supplementation could enhance the immune response to tetanus toxoid (TT) vaccine in a mouse model. Vaccination of TT was performed on day 7 and 21 in mice fed daily with Spirulina (50 and 150 mg/kg body weight). Both Spirulina supplementation and TT vaccination did not significantly affect body weight gain of the mice. Supplementation of Spirulina significantly enhanced IgG level (p = .01) after the first but not after the second TT vaccination. The anti-TT IgG levels of the groups that received low dose and high dose of Spirulina were not significantly different. Spirulina supplementation did not show significant effects on in vitro splenocyte proliferation and cytokine (IFN-γ and IL-4) production induced by Con A and TT. This study showed that Spirulina supplementation could enhance primary immune response in terms of antibody production, but not secondary immune response following TT vaccination in a mouse model.
    Matched MeSH terms: Spirulina/immunology*
  18. Rasool M, Sabina EP
    J Nat Med, 2009 Apr;63(2):169-75.
    PMID: 19093070 DOI: 10.1007/s11418-008-0308-2
    In recent years, Spirulina has gained more and more attention from medical scientists as a nutraceutical and a source of potential pharmaceuticals. The present study was conducted to elucidate the immunomodulatory effect of Spirulina fusiformis (a cyanobacterium of the family Oscillatoriaceae) in vivo and in vitro. The in vivo effect of S. fusiformis (400 or 800 mg/kg body wt.) on humoral immune response, cell-mediated immune response and tumour necrosis factor alpha was investigated in mice. We also evaluated the effect of S. fusiformis (50 or 100 microg/ml) in vitro on mitogen (phytohaemagglutinin)-induced T lymphocyte proliferation in heparinized human peripheral blood. For comparison, dexamethasone was used as a standard. In mice, S. fusiformis (400 or 800 mg/kg body wt.) administration significantly inhibited the humoral immune response, cell-mediated immune response (delayed-type hypersensitivity reaction (DTH)) and tumour necrosis factor alpha in a dose-dependent manner. In vitro, S. fusiformis (50 or 100 microg/ml) decreased the mitogen (phytohaemagglutinin)-induced T lymphocyte proliferation in a concentration-dependent manner when compared with control cells. These observations clearly suggest that S. fusiformis has a remarkable immunosuppressive effect, which provides a scientific validation for the popular use of this drug, and helped us in further work on investigating its complete mechanism of action.
    Matched MeSH terms: Spirulina/chemistry*
  19. Abdullahi D, Ahmad Annuar A, Sanusi J
    Ultrastruct Pathol, 2020 Nov 20;44(4-6):359-371.
    PMID: 32686973 DOI: 10.1080/01913123.2020.1792597
    Despite intense preclinical research focusing on developing potential strategies of mitigating spinal cord injury (SCI), SCI still results in permanent, debilitating symptoms for which there are currently no effective pharmacological interventions to improve the recovery of the fine ultrastructure of the spinal cord. Spirulina platensis is thought to have potential neuroprotective effects. We have previously demonstrated its protective potential on the lesioned corticospinal tracts and behavioral recovery. In this study, spirulina, known for its neuroprotective properties was used to further explore its protective effects on spinal cord gray matter ultrastructural. Twenty-four Sprague-Dawley rats were used and divided into sham group (laminectomy without SCI), control group (SCI without S. platensis), and S. platensis group (SCI + 180 mg/kg S. platensis). All animals were anesthetized via intramuscular injection. A partial crush injury was induced at the level of T12. The rats were humanely sacrificed for 28 days postinjury for ultrastructural study. There were significant mean differences with respect to pairwise comparisons between the ultrastructural grading score of neuronal perikarya of control and the S. platensis following injury at day 28, which correlates with the functional locomotor recovery at this timepoint in our previous study. The group supplemented with spirulina, thus, revealed a better improvement in the fine ultrastructure of the spinal cord gray matter when compared to the control group thereby suggesting neuroprotective potentials of spirulina in mitigating the effects of spinal cord injury and inducing functional recovery.
    Matched MeSH terms: Spirulina
  20. Abdullahi D, Ahmad Annuar A, Sanusi J
    Ultrastruct Pathol, 2019;43(6):273-289.
    PMID: 31779507 DOI: 10.1080/01913123.2019.1695693
    Spinal cord injury (SCI) results from penetrating or compressive traumatic injury to the spine in humans or by the surgical compression of the spinal cord in experimental animals. In this study, the neuroprotective potential of Spirulina platensis was investigated on ultrastructural and functional recovery of the spinal cord following surgical-induced injury. Twenty-four Sprague-Dawley rats were divided into three groups; sham group, control (trauma) group, and experimental (S. platensis) group (180 mg/kg) of eight rats each. For each group, the rats were then subdivided into two groups to allow measurement at two different timepoints (day 14 and 28) for the microscopic analysis. Rats in the control and experimental S. platensis groups were subjected to partial crush injury at the level of T12 with Inox number 2 modified forceps by compressing on the spinal cord for 30 s. Pairwise comparisons of ultrastructural grading mean scores difference between the control and experimental S. platensis groups reveals that there were significant differences on the axonal ultrastructure, myelin sheath and BBB Score on Day 28; these correlate with the functional locomotor recovery at this timepoint. The results suggest that supplementation with S. platensis induces functional recovery and effective preservation of the spinal cord ultrastructure after SCI. These findings will open new potential avenue for further research into the mechanism of S. platensis-mediated spinal cord repair.
    Matched MeSH terms: Spirulina*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links