Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, et al.
    J Ethnopharmacol, 2015 May 26;166:270-8.
    PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039
    Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  2. Oh L, Hafsi H, Hainaut P, Ariffin H
    Curr Opin Oncol, 2019 03;31(2):84-91.
    PMID: 30585860 DOI: 10.1097/CCO.0000000000000504
    PURPOSE OF REVIEW: Childhood blastomas, unlike adult cancers, originate from developing organs in which molecular and cellular features exhibit differentiation arrest and embryonic characteristics. Conventional cancer therapies, which rely on the generalized cytotoxic effect on rapidly dividing cells, may damage delicate organs in young children, leading to multiple late effects. Deep understanding of the biology of embryonal cancers is crucial in reshaping the cancer treatment paradigm for children.

    RECENT FINDINGS: p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed.

    SUMMARY: Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).

    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  3. Abdullah A, Deris S, Anwar S, Arjunan SN
    PLoS One, 2013;8(3):e56310.
    PMID: 23469172 DOI: 10.1371/journal.pone.0056310
    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  4. Wan Muhaizan WM, Ahmad PK, Phang KS, Arni T
    Malays J Pathol, 2006 Dec;28(2):93-9.
    PMID: 18376798 MyJurnal
    This study was carried out to determine the role of p53 and p21 in the pathogenesis of prostatic adenocarcinoma and their association with tumour grade.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  5. Mohd Fisall UF, Ismail NZ, Adebayo IA, Arsad H
    Mol Biol Rep, 2021 May;48(5):4465-4475.
    PMID: 34086162 DOI: 10.1007/s11033-021-06466-y
    Moringa oleifera is a well-known medicinal plant which has anti-cancer and other biological activities. This research aims to determine the cytotoxic and apoptotic effect of M. oleifera leave extract on the breast cancer (MCF7) cells. The extracts were prepared using hexane, dichloromethane, chloroform and n-butanol by fractionating the crude 80% methanol extract of the plant leaves. The cytotoxic effect of the extracts on MCF7 cells were determined using CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay. The apoptosis study was conducted using Annexin V-FITC analysis and confirmed by Western blotting using selected proteins, which are p53, Bax, cytochrome c and caspase 8. Our results showed that the dichloromethane (DF-CME-MOL) extract was selectively cytotoxic to MCF7 cells (5 μg/mL) without significantly inhibiting the non-cancerous breast (MCF 10A) cells. It had the highest selectivity index (SI) value of 9.5 among the tested extracts. It also induced early apoptosis and increased the expressions of pro-apoptotic proteins Bax, caspase 8 and p53 in MCF7 cells. Gas chromatography-mass spectrometry analysis (GC-MS) analysis showed that the major compounds found in DF-CME-MOL were benzeneacetonitrile, 4-hydroxy- and benzeneacetic acid, 4-hydroxy-, methyl ester among others that were detected. Thus, DF-CME-MOL extract was found to inhibit the proliferation of MCF7 cells by apoptosis induction, which is likely due to the activities of the detected phytochemical compounds of the extract.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  6. Nagoor NH, Shah Jehan Muttiah N, Lim CS, In LL, Mohamad K, Awang K
    PLoS One, 2011;6(8):e23661.
    PMID: 21858194 DOI: 10.1371/journal.pone.0023661
    The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  7. Salleh MN, Ismail P, Abdullah AS, Taufiq-Yap YH, Carmichael P
    IUBMB Life, 2004 Jul;56(7):409-16.
    PMID: 15545218
    Studies with clastogenic carcinogen diethylstilbestrol (DES) resulted in a broad of spectrum of toxic and carcinogenic effects in humans and rodents, but the cellular and molecular mechanism(s) by which it induces cancer is not clear. To identify putative genetic targets for p53 in vivo, we applied the cDNA macroarray gene expression profiles associated with apoptosis by comparing p53+/- knockout mice and wild-type mice on the kidney and uterus of female mice. p53+/- knockout mice and wild-type mice were treated with DES (500 micromole kg(-1)) or vehicle i.p once daily for 4 days. Total RNAs were obtained from kidney and uterus of both control and DES-treated. The signal intensities of individual gene spots on the membrane were quantified and normalized to the expression level of the GAPDH gene as an internal control. Our results demonstrated that 16 genes; bad, bax, bcl-2, bcl-w, bcl-x, caspase-3, caspase-7, caspase-8, c-myc, E124, GADD45, mdm2, NKkappab1, p53, p21, Rb and trail were up-regulated and six genes; caspase-1, caspase-2, DR5, E2F1, FasL and iNOS did not changed in response to DES treatment in wild-type mice compared to p53+/- knockout mice. Most genes are involved in cell cycle regulation, signal transduction, apoptosis, or transcription. The greatest changes were seen in bad, bcl-x, mdm2, p53 and p21 gene expression in wild-type mice compared to p53+/- knockout mice. In comparing p53 and p21 gene expression in wild-type mice and p53+/- knockout mice, there was an 4.4-fold vs. 1.8-fold; 8-fold vs. 5.2-fold for kidney and 16-fold vs. 5.5-fold; 2.1-fold vs. 8.3-fold for uterus samples increase in induction (respectively). RT-PCR and densitometric analysis was used to confirm the biggest changes of p21, p53 and bax genes. Using this approach, we have identified apoptosis associated genes regulated in response to DES and have revealed putative differences between the isogenic parent strain and p53+/- knockout mice, which will contribute to a better understanding of toxicity/carcinogenicity mechanisms in this model.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  8. Mekzali NW, Chee CW, Abdullah I, Lee YK, Rashid NN, Lee VS, et al.
    Med Chem, 2023;19(9):897-905.
    PMID: 37046198 DOI: 10.2174/1573406419666230410134213
    BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen.

    OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties.

    METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z).

    RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit.

    CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.

    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  9. Lim KP, Sharifah H, Lau SH, Teo SH, Cheong SC
    Oncol Rep, 2005 Oct;14(4):963-8.
    PMID: 16142358 DOI: 10.3892/or.14.4.963
    The majority of global incidences of oral cancer occur in Asia, and the aetiology of oral cancer is different in Asia as it is in the West. However, whereas there is a growing understanding of the molecular mechanisms of oral cancer progression in the West, there is little progress in this understanding in Asia. In particular, the role of the p53 pathway in modulating cancer progression in Asian oral cancer remains unclear. In this study, we micro-dissected and analysed 20 well-differentiated oral squamous cell carcinoma specimens for alterations in the p53 pathway. We found that 6/20 samples contained mutations in the p53 gene which occurred in three hotspots, at codon 203, 218 and 296. Furthermore, 6/20 samples had a homozygous deletion of p14ARF, but notably p14ARF deletion and p53 mutation events were often independent and mutually exclusive. Strikingly, MDM2 was upregulated in 20/20 samples, but not in 3/3 normal tissue specimens. Taken together, these data suggest that inactivation of the p53 pathway is a frequent event in oral squamous cell carcinoma, which occurs by an aberration in one of a number of players in the p53 pathway.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  10. Pang KL, Chin KY
    Int J Mol Sci, 2019 Oct 25;20(21).
    PMID: 31731474 DOI: 10.3390/ijms20215318
    Selenium is a trace element essential to humans and forms complexes with proteins, which exert physiological functions in the body. In vitro studies suggested that selenium possesses anticancer effects and may be effective against osteosarcoma. This review aims to summarise current evidence on the anticancer activity of inorganic and organic selenium on osteosarcoma. Cellular studies revealed that inorganic and organic selenium shows cytotoxicity, anti-proliferative and pro-apoptotic effects on various osteosarcoma cell lines. These actions may be mediated by oxidative stress induced by selenium compounds, leading to the activation of p53, proapoptotic proteins and caspases. Inorganic selenium is selective towards cancer cells, but can cause non-selective cell death at a high dose. This condition challenges the controlled release of selenium from biomaterials. Selenium treatment in animals inoculated with osteosarcoma reduced the tumour size, but did not eliminate the incidence of osteosarcoma. Only one study investigated the relationship between selenium and osteosarcoma in humans, but the results were inconclusive. In summary, although selenium may exert anticancer properties on osteosarcoma in experimental model systems, its effects in humans require further investigation.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  11. Kurhe Y, Mahesh R, Devadoss T
    Psychopharmacology (Berl), 2017 Apr;234(7):1165-1179.
    PMID: 28238069 DOI: 10.1007/s00213-017-4558-0
    RATIONALE: Depression associated with obesity remains an interesting area to study the biological mechanisms and novel therapeutic intervention.

    OBJECTIVES: The present study investigates the effect of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on several pathogenic markers of depression associated with obesity such as plasma insulin resistance, hippocampal cyclic adenosine monophosphate (cAMP), brain-derived neurotrophic factor (BDNF), serotonin (5-HT) concentrations, hippocampal neuronal damage, and p53 protein expression in high-fat-diet (HFD)-fed mice.

    METHODS: Obesity was experimentally induced in mice by feeding with HFD for 14 weeks followed by administration of QCM-4 (1 and 2 mg/kg, p.o.)/standard escitalopram (ESC) (10 mg/kg, p.o.)/vehicle (10 ml/kg, p.o.) for 28 days. Behavioral assays such as sucrose preference test (SPT); forced swim test (FST); elevated plus maze (EPM); biochemical assays including oral glucose tolerance tests (OGTT), insulin, cAMP, BDNF, and 5-HT concentrations; and molecular assays mainly histology and immunohistochemistry (IHC) of p53 protein in the dentate gyrus (DG), CA1, and CA3 regions of hippocampus in HFD fed mice were performed.

    RESULTS: Chronic treatment with QCM-4 in HFD-fed mice reversed the behavioral alterations in SPT, FST, and EPM. QCM-4 showed poor sensitivity for plasma glucose, improved insulin sensitivity, increased hippocampal cAMP, BDNF, and 5-HT concentrations. In the hippocampal DG, CA1, and CA3 regions, QCM-4 treatment improved the neuronal morphology in the histopathology and inhibited p53 protein expression in IHC assay in HFD-fed mice.

    CONCLUSION: QCM-4 attenuated the depressive-like phenotype in HFD-fed mice by improving behavioral, biochemical, and molecular alterations through serotonergic neuromodulation.

    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  12. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  13. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:4115-29.
    PMID: 24204141 DOI: 10.2147/IJN.S50061
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  14. Koriem KM, Arbid MS, Emam KR
    Environ Toxicol Pharmacol, 2014 Jul;38(1):14-23.
    PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029
    Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  15. Etti IC, Rasedee A, Hashim NM, Abdul AB, Kadir A, Yeap SK, et al.
    Drug Des Devel Ther, 2017;11:865-879.
    PMID: 28356713 DOI: 10.2147/DDDT.S124324
    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism*
  16. Fauzi MF, Gokozan HN, Elder B, Puduvalli VK, Pierson CR, Otero JJ, et al.
    J Neurooncol, 2015 Sep;124(3):393-402.
    PMID: 26255070 DOI: 10.1007/s11060-015-1872-4
    We present a computer aided diagnostic workflow focusing on two diagnostic branch points in neuropathology (intraoperative consultation and p53 status in tumor biopsy specimens) by means of texture analysis via discrete wavelet frames decomposition. For intraoperative consultation, our methodology is capable of classifying glioblastoma versus metastatic cancer by extracting textural features from the non-nuclei region of cytologic preparations based on the imaging characteristics of glial processes, which appear as anisotropic thin linear structures. For metastasis, these are homogeneous in appearance, thus suitable and extractable texture features distinguish the two tissue types. Experiments on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7 % for glioblastoma, 87.5 % for metastasis and 88.7 % overall. For p53 interpretation, we detect and classify p53 status by classifying staining intensity into strong, moderate, weak and negative sub-classes. We achieved this by developing a novel adaptive thresholding for detection, a two-step rule based on weighted color and intensity for the classification of positively and negatively stained nuclei, followed by texture classification to classify the positively stained nuclei into the strong, moderate and weak intensity sub-classes. Our detection method is able to correctly locate and distinguish the four types of cells, at 85 % average precision and 88 % average sensitivity rate. These classification methods on the other hand recorded 81 % accuracy in classifying the positive and negative cells, and 60 % accuracy in further classifying the positive cells into the three intensity groups, which is comparable with neuropathologists' markings.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  17. Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, et al.
    PMID: 22471785 DOI: 10.1186/1472-6882-12-35
    Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  18. Ichwan SJ, Al-Ani IM, Bilal HG, Suriyah WH, Taher M, Ikeda MA
    Chin J Physiol, 2014 Oct 31;57(5):249-55.
    PMID: 25241984 DOI: 10.4077/CJP.2014.BAB190
    Thymoquinone (TQ) is the main constituent of black seed (Nigella sativa, spp) essential oil which shows promising in vitro and in vivo anti-neoplastic activities in different tumor cell lines. However, to date there are only a few reports regarding the apoptotic effects of TQ on cervical cancer cells. Here, we report that TQ stimulated distinct apoptotic pathways in two human cervical cell lines, Siha and C33A. TQ markedly induced apoptosis as demonstrated by cell cycle analysis in both cell lines. Moreover, quantitative PCR revealed that TQ induced apoptosis in Siha cells through p53-dependent pathway as shown by elevated level of p53-mediated apoptosis target genes, whereas apoptosis in C33A cells was mainly associated with the activation of caspase-3. These results support previous findings on TQ as a potential therapeutic agent for human cervical cancer.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  19. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
  20. Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N
    Nutr Cancer, 2020;72(5):826-834.
    PMID: 31433251 DOI: 10.1080/01635581.2019.1654530
    Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
    Matched MeSH terms: Tumor Suppressor Protein p53/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links