Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Tan YC, Mustangin M, Rosli N, Wan Ahmad Kammal WSE, Md Isa N, Low TY, et al.
    Cryobiology, 2024 Mar;114:104843.
    PMID: 38158171 DOI: 10.1016/j.cryobiol.2023.104843
    Coolant-assisted liquid nitrogen (LN) flash freezing of frozen tissues has been widely adopted to preserve tissue morphology for histopathological annotations in mass spectrometry-based spatial proteomics techniques. However, existing coolants pose health risks upon inhalation and are expensive. To overcome this challenge, we present our pilot study by introducing the EtOH-LN workflow, which demonstrates the feasibility of using 95 % ethanol as a safer and easily accessible alternative to existing coolants for LN-based cryoembedding of frozen tissues. Our study reveals that both the EtOH-LN and LN-only cryoembedding workflows exhibit significantly reduced freezing artifacts compared to cryoembedding in cryostat (p workflow, which successfully restored the tissue architecture from freezing artifacts (p workflow on the molecular profiles of tissues.
    Matched MeSH terms: Workflow
  2. Liew JES, Chong Cheng Y, Tai NL, Pereira A, Manivannan V, Khoo SL, et al.
    Int J Pharm Pract, 2024 Feb 15;32(1):83-90.
    PMID: 38289996 DOI: 10.1093/ijpp/riad083
    OBJECTIVES: This study aimed to evaluate the effectiveness of workflow redesign (eaST system) on pharmacy waiting time and near-missed events. We also investigated other factors that may potentially affect these study outcomes.

    METHODS: A quasi-experimental (before-after) study design was adopted. Pre-intervention data were collected over 7 months (January-July 2017). Subsequently, the workflow redesign (eaST system) was implemented and the effect of the intervention (August 2017-February 2018) was evaluated. Univariate analysis was used to compare the differences between pre-intervention and post-intervention of pharmacy waiting time and near-missed events. Significant factors affecting study outcomes were analysed using linear regression analysis.

    KEY FINDINGS: A total of 210,530 prescriptions were analysed. The eaST system significantly increases the percentage of prescriptions dispensed within 30 min per day (median = 68 (interquartile range (IQR) = 41) vs. median = 93 (IQR = 33), P < 0.001) and reduced the mean percentage of near-missed events (mean = 50.71 (standard deviation (SD) = 23.95) vs. mean = 27.87 (SD = 12.23), P < 0.001). However, the eaST system's effects on related outcomes were conditional on a three-way interaction effect. The eaST system's effects on pharmacy waiting time were influenced by the number of prescriptions received and the number of PhIS server disruptions. Conversely, the eaST system's effects on near-missed events were influenced by the number of pharmacy personnel and number of controlled medications.

    CONCLUSIONS: Overall, the eaST system improved the pharmacy waiting time and reduced near-missed events.

    Matched MeSH terms: Workflow
  3. Fletcher E, Burns A, Wiering B, Lavu D, Shephard E, Hamilton W, et al.
    BMC Prim Care, 2023 Jan 20;24(1):23.
    PMID: 36670354 DOI: 10.1186/s12875-023-01973-2
    BACKGROUND: Electronic clinical decision support tools (eCDS) are increasingly available to assist General Practitioners (GP) with the diagnosis and management of a range of health conditions. It is unclear whether the use of eCDS tools has an impact on GP workload. This scoping review aimed to identify the available evidence on the use of eCDS tools by health professionals in general practice in relation to their impact on workload and workflow.

    METHODS: A scoping review was carried out using the Arksey and O'Malley methodological framework. The search strategy was developed iteratively, with three main aspects: general practice/primary care contexts, risk assessment/decision support tools, and workload-related factors. Three databases were searched in 2019, and updated in 2021, covering articles published since 2009: Medline (Ovid), HMIC (Ovid) and Web of Science (TR). Double screening was completed by two reviewers, and data extracted from included articles were analysed.

    RESULTS: The search resulted in 5,594 references, leading to 95 full articles, referring to 87 studies, after screening. Of these, 36 studies were based in the USA, 21 in the UK and 11 in Australia. A further 18 originated from Canada or Europe, with the remaining studies conducted in New Zealand, South Africa and Malaysia. Studies examined the use of eCDS tools and reported some findings related to their impact on workload, including on consultation duration. Most studies were qualitative and exploratory in nature, reporting health professionals' subjective perceptions of consultation duration as opposed to objectively-measured time spent using tools or consultation durations. Other workload-related findings included impacts on cognitive workload, "workflow" and dialogue with patients, and clinicians' experience of "alert fatigue".

    CONCLUSIONS: The published literature on the impact of eCDS tools in general practice showed that limited efforts have focused on investigating the impact of such tools on workload and workflow. To gain an understanding of this area, further research, including quantitative measurement of consultation durations, would be useful to inform the future design and implementation of eCDS tools.

    Matched MeSH terms: Workflow
  4. Ahmad Z, Jehangiri AI, Ala'anzy MA, Othman M, Umar AI
    Sensors (Basel), 2021 Oct 30;21(21).
    PMID: 34770545 DOI: 10.3390/s21217238
    Cloud computing is a fully fledged, matured and flexible computing paradigm that provides services to scientific and business applications in a subscription-based environment. Scientific applications such as Montage and CyberShake are organized scientific workflows with data and compute-intensive tasks and also have some special characteristics. These characteristics include the tasks of scientific workflows that are executed in terms of integration, disintegration, pipeline, and parallelism, and thus require special attention to task management and data-oriented resource scheduling and management. The tasks executed during pipeline are considered as bottleneck executions, the failure of which result in the wholly futile execution, which requires a fault-tolerant-aware execution. The tasks executed during parallelism require similar instances of cloud resources, and thus, cluster-based execution may upgrade the system performance in terms of make-span and execution cost. Therefore, this research work presents a cluster-based, fault-tolerant and data-intensive (CFD) scheduling for scientific applications in cloud environments. The CFD strategy addresses the data intensiveness of tasks of scientific workflows with cluster-based, fault-tolerant mechanisms. The Montage scientific workflow is considered as a simulation and the results of the CFD strategy were compared with three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min. The simulation results showed that the CFD strategy reduced the make-span by 14.28%, 20.37%, and 11.77%, respectively, as compared with the existing three policies. Similarly, the CFD reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared with the existing three policies. In case of the CFD strategy, the SLA is not violated with regard to time and cost constraints, whereas it is violated by the existing policies numerous times.
    Matched MeSH terms: Workflow
  5. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Workflow
  6. Emrizal R, Hamdani HY, Firdaus-Raih M
    Int J Mol Sci, 2021 Aug 09;22(16).
    PMID: 34445259 DOI: 10.3390/ijms22168553
    The increasing number and complexity of structures containing RNA chains in the Protein Data Bank (PDB) have led to the need for automated structure annotation methods to replace or complement expert visual curation. This is especially true when searching for tertiary base motifs and substructures. Such base arrangements and motifs have diverse roles that range from contributions to structural stability to more direct involvement in the molecule's functions, such as the sites for ligand binding and catalytic activity. We review the utility of computational approaches in annotating RNA tertiary base motifs in a dataset of PDB structures, particularly the use of graph theoretical algorithms that can search for such base motifs and annotate them or find and annotate clusters of hydrogen-bond-connected bases. We also demonstrate how such graph theoretical algorithms can be integrated into a workflow that allows for functional analysis and comparisons of base arrangements and sub-structures, such as those involved in ligand binding. The capacity to carry out such automatic curations has led to the discovery of novel motifs and can give new context to known motifs as well as enable the rapid compilation of RNA 3D motifs into a database.
    Matched MeSH terms: Workflow
  7. Olakotan OO, Yusof MM
    J Eval Clin Pract, 2021 Aug;27(4):868-876.
    PMID: 33009698 DOI: 10.1111/jep.13488
    RATIONALE, AIMS, AND OBJECTIVES: Clinical decision support (CDS) generates excessive alerts that disrupt the workflow of clinicians. Therefore, inefficient clinical processes that contribute to the misfit between CDS alert and workflow must be evaluated. This study evaluates the appropriateness of CDS alerts in supporting clinical workflow from a socio-technical perspective.

    METHOD: A qualitative case study evaluation was conducted at a 620-bed public teaching hospital in Malaysia using interview, observation, and document analysis to investigate the features and functions of alert appropriateness and workflow-related issues in cardiological and dermatological settings. The current state map for medication prescribing process was also modelled to identify problems pertinent to CDS alert appropriateness.

    RESULTS: The main findings showed that CDS was not well designed to fit into a clinician's workflow due to influencing factors such as technology (usability, alert content, and alert timing), human (training, perception, knowledge, and skills), organizational (rules and regulations, privacy, and security), and processes (documenting patient information, overriding default option, waste, and delay) impeding the use of CDS with its alert function. We illustrated how alert affect workflow in clinical processes using a Lean tool known as value stream mapping. This study also proposes how CDS alerts should be integrated into clinical workflows to optimize their potential to enhance patient safety.

    CONCLUSION: The design and implementation of CDS alerts should be aligned with and incorporate socio-technical factors. Process improvement methods such as Lean can be used to enhance the appropriateness of CDS alerts by identifying inefficient clinical processes that impede the fit of these alerts into clinical workflow.

    Matched MeSH terms: Workflow
  8. Farook TH, Jamayet NB, Asif JA, Din AS, Mahyuddin MN, Alam MK
    Sci Rep, 2021 04 19;11(1):8469.
    PMID: 33875672 DOI: 10.1038/s41598-021-87240-9
    Palatal defects are rehabilitated by fabricating maxillofacial prostheses called obturators. The treatment incorporates taking deviously unpredictable impressions to facsimile the palatal defects into plaster casts for obturator fabrication in the dental laboratory. The casts are then digitally stored using expensive hardware to prevent physical damage or data loss and, when required, future obturators are digitally designed, and 3D printed. Our objective was to construct and validate an economic in-house smartphone-integrated stereophotogrammetry (SPINS) 3D scanner and to evaluate its accuracy in designing prosthetics using open source/free (OS/F) digital pipeline. Palatal defect models were scanned using SPINS and its accuracy was compared against the standard laser scanner for virtual area and volumetric parameters. SPINS derived 3D models were then used to design obturators by using (OS/F) software. The resultant obturators were virtually compared against standard medical software designs. There were no significant differences in any of the virtual parameters when evaluating the accuracy of both SPINS, as well as OS/F derived obturators. However, limitations in the design process resulted in minimal dissimilarities. With further improvements, SPINS based prosthetic rehabilitation could create a viable, low cost method for rural and developing health services to embrace maxillofacial record keeping and digitised prosthetic rehabilitation.
    Matched MeSH terms: Workflow
  9. Olakotan OO, Mohd Yusof M
    Health Informatics J, 2021 4 16;27(2):14604582211007536.
    PMID: 33853395 DOI: 10.1177/14604582211007536
    A CDSS generates a high number of inappropriate alerts that interrupt the clinical workflow. As a result, clinicians silence, disable, or ignore alerts, thereby undermining patient safety. Therefore, the effectiveness and appropriateness of CDSS alerts need to be evaluated. A systematic review was carried out to identify the factors that affect CDSS alert appropriateness in supporting clinical workflow. Seven electronic databases (PubMed, Scopus, ACM, Science Direct, IEEE, Ovid Medline, and Ebscohost) were searched for English language articles published between 1997 and 2018. Seventy six papers met the inclusion criteria, of which 26, 24, 15, and 11 papers are retrospective cohort, qualitative, quantitative, and mixed-method studies, respectively. The review highlights various factors influencing the appropriateness and efficiencies of CDSS alerts. These factors are categorized into technology, human, organization, and process aspects using a combination of approaches, including socio-technical framework, five rights of CDSS, and Lean. Most CDSS alerts were not properly designed based on human factor methods and principles, explaining high alert overrides in clinical practices. The identified factors and recommendations from the review may offer valuable insights into how CDSS alerts can be designed appropriately to support clinical workflow.
    Matched MeSH terms: Workflow
  10. Lim HM, Teo CH, Ng CJ, Chiew TK, Ng WL, Abdullah A, et al.
    JMIR Med Inform, 2021 Feb 26;9(2):e23427.
    PMID: 33600345 DOI: 10.2196/23427
    BACKGROUND: During the COVID-19 pandemic, there was an urgent need to develop an automated COVID-19 symptom monitoring system to reduce the burden on the health care system and to provide better self-monitoring at home.

    OBJECTIVE: This paper aimed to describe the development process of the COVID-19 Symptom Monitoring System (CoSMoS), which consists of a self-monitoring, algorithm-based Telegram bot and a teleconsultation system. We describe all the essential steps from the clinical perspective and our technical approach in designing, developing, and integrating the system into clinical practice during the COVID-19 pandemic as well as lessons learned from this development process.

    METHODS: CoSMoS was developed in three phases: (1) requirement formation to identify clinical problems and to draft the clinical algorithm, (2) development testing iteration using the agile software development method, and (3) integration into clinical practice to design an effective clinical workflow using repeated simulations and role-playing.

    RESULTS: We completed the development of CoSMoS in 19 days. In Phase 1 (ie, requirement formation), we identified three main functions: a daily automated reminder system for patients to self-check their symptoms, a safe patient risk assessment to guide patients in clinical decision making, and an active telemonitoring system with real-time phone consultations. The system architecture of CoSMoS involved five components: Telegram instant messaging, a clinician dashboard, system administration (ie, back end), a database, and development and operations infrastructure. The integration of CoSMoS into clinical practice involved the consideration of COVID-19 infectivity and patient safety.

    CONCLUSIONS: This study demonstrated that developing a COVID-19 symptom monitoring system within a short time during a pandemic is feasible using the agile development method. Time factors and communication between the technical and clinical teams were the main challenges in the development process. The development process and lessons learned from this study can guide the future development of digital monitoring systems during the next pandemic, especially in developing countries.

    Matched MeSH terms: Workflow
  11. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
    Matched MeSH terms: Workflow
  12. Belhaj AF, Elraies KA, Alnarabiji MS, Abdul Kareem FA, Shuhli JA, Mahmood SM, et al.
    Chem Eng J, 2021 Feb 15;406:127081.
    PMID: 32989375 DOI: 10.1016/j.cej.2020.127081
    Throughout the application of enhanced oil recovery (EOR), surfactant adsorption is considered the leading constraint on both the successful implementation and economic viability of the process. In this study, a comprehensive investigation on the adsorption behaviour of nonionic and anionic individual surfactants; namely, alkyl polyglucoside (APG) and alkyl ether carboxylate (AEC) was performed using static adsorption experiments, isotherm modelling using (Langmuir, Freundlich, Sips, and Temkin models), adsorption simulation using a state-of-the-art method, binary mixture prediction using the modified extended Langmuir (MEL) model, and artificial neural network (ANN) prediction. Static adsorption experiments revealed higher adsorption capacity of APG as compared to AEC, with sips being the most fitted model with R2 (0.9915 and 0.9926, for APG and AEC respectively). It was indicated that both monolayer and multilayer adsorption took place in a heterogeneous adsorption system with non-uniform surfactant molecules distribution, which was in remarkable agreement with the simulation results. The (APG/AEC) binary mixture prediction depicted contradictory results to the experimental individual behaviour, showing that AEC had more affinity to adsorb in competition with APG for the adsorption sites on the rock surface. The adopted ANN model showed good agreement with the experimental data and the simulated adsorption values for APG and AEC showed a decreasing trend as temperature increases. Simulating the impact of binary surfactant adsorption can provide a tremendous advantage of demonstrating the binary system behaviour with less experimental data. The utilization of ANN for such prediction procedure can minimize the experimental time, operating cost and give feasible predictions compared to other computational methods. The integrated workflow followed in this study is quite innovative as it has not been employed before for surfactant adsorption studies.
    Matched MeSH terms: Workflow
  13. Alauddin MS, Baharuddin AS, Mohd Ghazali MI
    Healthcare (Basel), 2021 Jan 25;9(2).
    PMID: 33503807 DOI: 10.3390/healthcare9020118
    Dentistry is a part of the field of medicine which is advocated in this digital revolution. The increasing trend in dentistry digitalization has led to the advancement in computer-derived data processing and manufacturing. This progress has been exponentially supported by the Internet of medical things (IoMT), big data and analytical algorithm, internet and communication technologies (ICT) including digital social media, augmented and virtual reality (AR and VR), and artificial intelligence (AI). The interplay between these sophisticated digital aspects has dramatically changed the healthcare and biomedical sectors, especially for dentistry. This myriad of applications of technologies will not only be able to streamline oral health care, facilitate workflow, increase oral health at a fraction of the current conventional cost, relieve dentist and dental auxiliary staff from routine and laborious tasks, but also ignite participatory in personalized oral health care. This narrative article review highlights recent dentistry digitalization encompassing technological advancement, limitations, challenges, and conceptual theoretical modern approaches in oral health prevention and care, particularly in ensuring the quality, efficiency, and strategic dental care in the modern era of dentistry.
    Matched MeSH terms: Workflow
  14. Loh PS, Shariffuddin II, Chaw SH, Mansor M
    Med J Malaysia, 2021 01;76(1):98-100.
    PMID: 33510117
    Around June 2020, many institutions restarted full operating schedules to clear the backlog of postponed surgeries because of the first wave in the COVID-19 pandemic. In an online survey distributed among anaesthestists in Asian countries at that time, most of them described their safety concerns and recommendations related to the supply of personal protective equipment and its usage. The second concern was related to pre-operative screening for all elective surgical cases and its related issues. The new norm in practice was found to be non-standardized and involved untested devices or workflow that have since been phased out with growing evidence. Subsequent months after reinstating full elective surgeries tested the ability of many hospitals in handling the workload of non-COVID surgical cases together with rising COVID-19 positive cases in the second and third waves when stay-at-home orders eased.
    Matched MeSH terms: Workflow
  15. Loh PS, Chaw SH, Shariffuddin II, Ng CC, Yim CC, Hashim NHM
    Anesth Analg, 2021 Jan;132(1):15-24.
    PMID: 33002931 DOI: 10.1213/ANE.0000000000005264
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic affected and overwhelmed many health care systems around the world at an unprecedented speed and magnitude with devastating effects. In developing nations, smaller hospitals were unprepared to face this outbreak nor had strategies in place to do so at the beginning. Here, we describe the preparation in an anesthetic department using simulation-based training over 2 weeks, as the number of cases rose rapidly.

    METHODS: Three areas of priority were identified as follows: staff safety, patient movement, and possible clinical scenarios based on simulation principles in health care education. Staff was rostered and rotated through stations for rapid-cycle deliberate practice to learn donning and doffing of personal protective equipment (PPE) and powered air-purifying respirator (PAPR). For difficult airway management, Peyton's 4 steps for skills training and Harden's Three Circle model formed the structure in teaching the core skills. Several clinical scenarios used system probing to elicit inadequacies followed by formal debriefing to facilitate reflection. Finally, evaluation was both immediate and delayed with an online survey after 1 month to examine 4 levels of reaction, learning, behavior, and impact based on the Kirkpatrick Model. Frequency and thematic analysis were then conducted on the quantitative and qualitative data, respectively.

    RESULTS: A total of 15 of 16 (93%) consultants, 16 (100%) specialists, and 81 (100%) medical officers in the department completed training within 2 consecutive weeks. Reaction and part of the learning were relayed immediately to trainers during training. In total, 42 (39%) trained staff responded to the survey. All were satisfied and agreed on the relevance of training. A total of 41 respondents (98%; 95% confidence interval [CI], 87-99) answered 16 of 20 questions correctly on identifying aerosol-generating procedures (AGP), indications for PPE, planning and preparation for airway management to achieve adequate learning. About 43% (95% CI, 27-59) and 52% (95% CI, 36-68) recalled donning and doffing steps correctly. A total of 92 responses from 33 respondents were analyzed in the thematic analysis. All respondents reported at least 1 behavioral change in intended outcomes for hand hygiene practice (20%), appropriate use of PPE (27%), and airway management (10%). The emerging outcomes were vigilance, physical distancing, planning, and team communication. Finally, the impact of training led to the establishment of institutional guidelines followed by all personnel.

    CONCLUSIONS: Simulation-based training was a useful preparation tool for small institutions with limited time, resources, and manpower in developing nations. These recommendations represent the training experience to address issues of "when" and "how" to initiate urgent "medical education" during an outbreak.

    Matched MeSH terms: Workflow
  16. Ahmed N, Abbasi MS, Haider S, Ahmed N, Habib SR, Altamash S, et al.
    Biomed Res Int, 2021;2021:3194433.
    PMID: 34532499 DOI: 10.1155/2021/3194433
    Objective: Analyzing and comparing the fit and accuracy of removable partial denture (RPDs) frameworks fabricated with CAD/CAM and rapid prototyping methods with conventional techniques.

    Materials and Methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed/MEDLINE, Cochrane collaboration, Science direct, and Scopus scientific engines using selected MeSH keywords. The articles fulfilling the predefined selection criteria based on the fit and accuracy of removable partial denture (RPD) frameworks constructed from digital workflow (CAD/CAM; rapid prototyping) and conventional techniques were included.

    Results: Nine full-text articles comprising 6 in vitro and 3 in vivo studies were included in this review. The digital RPDs were fabricated in all articles by CAD/CAM selective laser sintering and selective laser melting techniques. The articles that have used CAD/CAM and rapid prototyping technique demonstrated better fit and accuracy as compared to the RPDs fabricated through conventional techniques. The least gaps between the framework and cast (41.677 ± 15.546 μm) were found in RPDs constructed through digital CAD/CAM systems.

    Conclusion: A better accuracy was achieved using CAD/CAM and rapid prototyping techniques. The RPD frameworks fabricated by CAD/CAM and rapid prototyping techniques had clinically acceptable fit, superior precision, and better accuracy than conventionally fabricated RPD frameworks.

    Matched MeSH terms: Workflow
  17. Abd Elaziz M, Abualigah L, Ibrahim RA, Attiya I
    Comput Intell Neurosci, 2021;2021:9114113.
    PMID: 34976046 DOI: 10.1155/2021/9114113
    Instead of the cloud, the Internet of things (IoT) activities are offloaded into fog computing to boost the quality of services (QoSs) needed by many applications. However, the availability of continuous computing resources on fog computing servers is one of the restrictions for IoT applications since transmitting the large amount of data generated using IoT devices would create network traffic and cause an increase in computational overhead. Therefore, task scheduling is the main problem that needs to be solved efficiently. This study proposes an energy-aware model using an enhanced arithmetic optimization algorithm (AOA) method called AOAM, which addresses fog computing's job scheduling problem to maximize users' QoSs by maximizing the makespan measure. In the proposed AOAM, we enhanced the conventional AOA searchability using the marine predators algorithm (MPA) search operators to address the diversity of the used solutions and local optimum problems. The proposed AOAM is validated using several parameters, including various clients, data centers, hosts, virtual machines, tasks, and standard evaluation measures, including the energy and makespan. The obtained results are compared with other state-of-the-art methods; it showed that AOAM is promising and solved task scheduling effectively compared with the other comparative methods.
    Matched MeSH terms: Workflow
  18. Halim N, Kuntom A, Shinde R, Banerjee K
    J AOAC Int, 2020 Sep 01;103(5):1237-1242.
    PMID: 33241391 DOI: 10.1093/jaoacint/qsaa041
    BACKGROUND: Indaziflam (IND) is a herbicide that is used in palm oil plantations for broad spectrum management of weeds. Until now, no validated method has been available for residue estimation of this herbicide in palm oil products.

    OBJECTIVE: In this study, we report a rapid method for the residue analysis of IND and its metabolites, viz., IND-carboxylic acid, diaminotriazine, and triazine indanone in a wide range of palm oil matrices using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    METHOD: The optimized sample preparation workflows included two options: (1) acetonitrile extraction (QuEChERS workflow), followed by freezing at -80°C and (2) acetonitrile extraction, followed by cleanup through a C18 solid phase extraction (SPE) cartridge. The optimized LC runtime was 7 min. All these analytes were estimated by LC-MS/MS multiple reaction monitoring.

    RESULTS: Both sample preparation methods provided similar method performance and acceptable results. The limit of quantification (LOQ) of IND, IND-carboxylic acid, and triazine indanone was 0.001 mg/kg. For diaminotriazine, the LOQ was 0.005 mg/kg. The method accuracy and precision complied with the SANTE/12682/2019 guidelines of analytical quality control.

    CONCLUSIONS: The potentiality of the method lies in a high throughput analysis of IND and its metabolites in a single chromatographic run with high selectivity and sensitivity. Considering its fit-for-purpose performance, the method can be implemented in regulatory testing of IND residues in a wide range of palm oil matrices that are consumed and traded worldwide.

    HIGHLIGHTS: This work has provided a validated method for simultaneous residue analysis of indaziflam and its metabolites in crude palm oil and its derived matrices with high sensitivity, selectivity, and throughput.

    Matched MeSH terms: Workflow
  19. Ashari MA, Zainal IA, Zaki FM
    Diagn Interv Radiol, 2020 Jul;26(4):296-300.
    PMID: 32352915 DOI: 10.5152/dir.2020.20232
    The world is facing an unprecedented global pandemic in the form of the coronavirus disease 2019 (COVID-19) which has ravaged all aspects of life, especially health systems. Radiology services, in particular, are under threat of being overwhelmed by the sheer number of patients affected, unless drastic efforts are taken to contain and mitigate the spread of the virus. Proactive measures, therefore, must be taken to ensure the continuation of diagnostic and interventional support to clinicians, while minimizing the risk of nosocomial transmission among staff and other patients. This article aims to highlight several strategies to improve preparedness, readiness and response towards this pandemic, specific to the radiology department.
    Matched MeSH terms: Workflow
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links