Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Fletcher E, Burns A, Wiering B, Lavu D, Shephard E, Hamilton W, et al.
    BMC Prim Care, 2023 Jan 20;24(1):23.
    PMID: 36670354 DOI: 10.1186/s12875-023-01973-2
    BACKGROUND: Electronic clinical decision support tools (eCDS) are increasingly available to assist General Practitioners (GP) with the diagnosis and management of a range of health conditions. It is unclear whether the use of eCDS tools has an impact on GP workload. This scoping review aimed to identify the available evidence on the use of eCDS tools by health professionals in general practice in relation to their impact on workload and workflow.

    METHODS: A scoping review was carried out using the Arksey and O'Malley methodological framework. The search strategy was developed iteratively, with three main aspects: general practice/primary care contexts, risk assessment/decision support tools, and workload-related factors. Three databases were searched in 2019, and updated in 2021, covering articles published since 2009: Medline (Ovid), HMIC (Ovid) and Web of Science (TR). Double screening was completed by two reviewers, and data extracted from included articles were analysed.

    RESULTS: The search resulted in 5,594 references, leading to 95 full articles, referring to 87 studies, after screening. Of these, 36 studies were based in the USA, 21 in the UK and 11 in Australia. A further 18 originated from Canada or Europe, with the remaining studies conducted in New Zealand, South Africa and Malaysia. Studies examined the use of eCDS tools and reported some findings related to their impact on workload, including on consultation duration. Most studies were qualitative and exploratory in nature, reporting health professionals' subjective perceptions of consultation duration as opposed to objectively-measured time spent using tools or consultation durations. Other workload-related findings included impacts on cognitive workload, "workflow" and dialogue with patients, and clinicians' experience of "alert fatigue".

    CONCLUSIONS: The published literature on the impact of eCDS tools in general practice showed that limited efforts have focused on investigating the impact of such tools on workload and workflow. To gain an understanding of this area, further research, including quantitative measurement of consultation durations, would be useful to inform the future design and implementation of eCDS tools.

    Matched MeSH terms: Workflow
  2. Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH
    J Zhejiang Univ Sci B, 2018 1 9;19(1):6-24.
    PMID: 29308604 DOI: 10.1631/jzus.B1700260
    Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.
    Matched MeSH terms: Workflow
  3. Loh PS, Shariffuddin II, Chaw SH, Mansor M
    Med J Malaysia, 2021 01;76(1):98-100.
    PMID: 33510117
    Around June 2020, many institutions restarted full operating schedules to clear the backlog of postponed surgeries because of the first wave in the COVID-19 pandemic. In an online survey distributed among anaesthestists in Asian countries at that time, most of them described their safety concerns and recommendations related to the supply of personal protective equipment and its usage. The second concern was related to pre-operative screening for all elective surgical cases and its related issues. The new norm in practice was found to be non-standardized and involved untested devices or workflow that have since been phased out with growing evidence. Subsequent months after reinstating full elective surgeries tested the ability of many hospitals in handling the workload of non-COVID surgical cases together with rising COVID-19 positive cases in the second and third waves when stay-at-home orders eased.
    Matched MeSH terms: Workflow
  4. Olakotan OO, Mohd Yusof M
    Health Informatics J, 2021 4 16;27(2):14604582211007536.
    PMID: 33853395 DOI: 10.1177/14604582211007536
    A CDSS generates a high number of inappropriate alerts that interrupt the clinical workflow. As a result, clinicians silence, disable, or ignore alerts, thereby undermining patient safety. Therefore, the effectiveness and appropriateness of CDSS alerts need to be evaluated. A systematic review was carried out to identify the factors that affect CDSS alert appropriateness in supporting clinical workflow. Seven electronic databases (PubMed, Scopus, ACM, Science Direct, IEEE, Ovid Medline, and Ebscohost) were searched for English language articles published between 1997 and 2018. Seventy six papers met the inclusion criteria, of which 26, 24, 15, and 11 papers are retrospective cohort, qualitative, quantitative, and mixed-method studies, respectively. The review highlights various factors influencing the appropriateness and efficiencies of CDSS alerts. These factors are categorized into technology, human, organization, and process aspects using a combination of approaches, including socio-technical framework, five rights of CDSS, and Lean. Most CDSS alerts were not properly designed based on human factor methods and principles, explaining high alert overrides in clinical practices. The identified factors and recommendations from the review may offer valuable insights into how CDSS alerts can be designed appropriately to support clinical workflow.
    Matched MeSH terms: Workflow
  5. Alauddin MS, Baharuddin AS, Mohd Ghazali MI
    Healthcare (Basel), 2021 Jan 25;9(2).
    PMID: 33503807 DOI: 10.3390/healthcare9020118
    Dentistry is a part of the field of medicine which is advocated in this digital revolution. The increasing trend in dentistry digitalization has led to the advancement in computer-derived data processing and manufacturing. This progress has been exponentially supported by the Internet of medical things (IoMT), big data and analytical algorithm, internet and communication technologies (ICT) including digital social media, augmented and virtual reality (AR and VR), and artificial intelligence (AI). The interplay between these sophisticated digital aspects has dramatically changed the healthcare and biomedical sectors, especially for dentistry. This myriad of applications of technologies will not only be able to streamline oral health care, facilitate workflow, increase oral health at a fraction of the current conventional cost, relieve dentist and dental auxiliary staff from routine and laborious tasks, but also ignite participatory in personalized oral health care. This narrative article review highlights recent dentistry digitalization encompassing technological advancement, limitations, challenges, and conceptual theoretical modern approaches in oral health prevention and care, particularly in ensuring the quality, efficiency, and strategic dental care in the modern era of dentistry.
    Matched MeSH terms: Workflow
  6. Ashari MA, Zainal IA, Zaki FM
    Diagn Interv Radiol, 2020 Jul;26(4):296-300.
    PMID: 32352915 DOI: 10.5152/dir.2020.20232
    The world is facing an unprecedented global pandemic in the form of the coronavirus disease 2019 (COVID-19) which has ravaged all aspects of life, especially health systems. Radiology services, in particular, are under threat of being overwhelmed by the sheer number of patients affected, unless drastic efforts are taken to contain and mitigate the spread of the virus. Proactive measures, therefore, must be taken to ensure the continuation of diagnostic and interventional support to clinicians, while minimizing the risk of nosocomial transmission among staff and other patients. This article aims to highlight several strategies to improve preparedness, readiness and response towards this pandemic, specific to the radiology department.
    Matched MeSH terms: Workflow
  7. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
    Matched MeSH terms: Workflow
  8. Tiong KH, Chang JK, Pathmanathan D, Hidayatullah Fadlullah MZ, Yee PS, Liew CS, et al.
    Biotechniques, 2018 12;65(6):322-330.
    PMID: 30477327 DOI: 10.2144/btn-2018-0072
    We describe a novel automated cell detection and counting software, QuickCount® (QC), designed for rapid quantification of cells. The Bland-Altman plot and intraclass correlation coefficient (ICC) analyses demonstrated strong agreement between cell counts from QC to manual counts (mean and SD: -3.3 ± 4.5; ICC = 0.95). QC has higher recall in comparison to ImageJauto, CellProfiler and CellC and the precision of QC, ImageJauto, CellProfiler and CellC are high and comparable. QC can precisely delineate and count single cells from images of different cell densities with precision and recall above 0.9. QC is unique as it is equipped with real-time preview while optimizing the parameters for accurate cell count and needs minimum hands-on time where hundreds of images can be analyzed automatically in a matter of milliseconds. In conclusion, QC offers a rapid, accurate and versatile solution for large-scale cell quantification and addresses the challenges often faced in cell biology research.
    Matched MeSH terms: Workflow
  9. Nematzadeh H, Motameni H, Mohamad R, Nematzadeh Z
    ScientificWorldJournal, 2014;2014:847930.
    PMID: 25110748 DOI: 10.1155/2014/847930
    Workflow-based web service compositions (WB-WSCs) is one of the main composition categories in service oriented architecture (SOA). Eflow, polymorphic process model (PPM), and business process execution language (BPEL) are the main techniques of the category of WB-WSCs. Due to maturity of web services, measuring the quality of composite web services being developed by different techniques becomes one of the most important challenges in today's web environments. Business should try to provide good quality regarding the customers' requirements to a composed web service. Thus, quality of service (QoS) which refers to nonfunctional parameters is important to be measured since the quality degree of a certain web service composition could be achieved. This paper tried to find a deterministic analytical method for dependability and performance measurement using Colored Petri net (CPN) with explicit routing constructs and application of theory of probability. A computer tool called WSET was also developed for modeling and supporting QoS measurement through simulation.
    Matched MeSH terms: Workflow*
  10. Syed-Mohamad SM, Ali SH, Mat-Husin MN
    Health Inf Manag, 2010 Mar;39(1):30-35.
    PMID: 28683624 DOI: 10.1177/183335831003900105
    This paper describes the method used to develop the One Stop Crisis Centre (OSCC) Portal, an open-source web-based electronic patient record system (EPR) for the One Stop Crisis Center, Hospital Universiti Sains Malaysia (HUSM) in Kelantan, Malaysia. Features and functionalities of the system are presented to demonstrate the workflow. Use of the OSCC Portal improved data integration and data communication and contributed to improvements in care management. With implementation of the OSCC portal, improved coordination between disciplines and standardisation of data in HUSM were noticed. It is expected that this will in turn result in improved data confidentiality and data integrity. The collected data will also be useful for quality assessment and research. Other low-resource centers with limited computer hardware and access to open-source software could benefit from this endeavour.
    Matched MeSH terms: Workflow
  11. Mohd Yusof M, Takeda T, Mihara N, Matsumura Y
    Stud Health Technol Inform, 2020 Jun 16;270:1036-1040.
    PMID: 32570539 DOI: 10.3233/SHTI200319
    Health information systems (HIS) and clinical workflows generate medication errors that affect the quality of patient care. The rigorous evaluation of the medication process's error risk, control, and impact on clinical practice enable the understanding of latent and active factors that contribute to HIS-induced errors. This paper reports the preliminary findings of an evaluation case study of a 1000-bed Japanese secondary care teaching hospital using observation, interview, and document analysis methods. Findings were analysed from a process perspective by adopting a recently introduced framework known as Human, Organisation, Process, and Technology-fit. Process factors influencing risk in medication errors include template- and calendar-based systems, intuitive design, barcode check, ease of use, alert, policy, systematic task organisation, and safety culture Approaches for managing medication errors also exert an important role on error reduction and clinical workflow.
    Matched MeSH terms: Workflow
  12. Tilley A, Dos Reis Lopes J, Wilkinson SP
    PLoS One, 2020;15(11):e0234760.
    PMID: 33186386 DOI: 10.1371/journal.pone.0234760
    Small-scale fisheries are responsible for landing half of the world's fish catch, yet there are very sparse data on these fishing activities and associated fisheries production in time and space. Fisheries-dependent data underpin scientific guidance of management and conservation of fisheries systems, but it is inherently difficult to generate robust and comprehensive data for small-scale fisheries, particularly given their dispersed and diverse nature. In tackling this challenge, we use open source software components including the Shiny R package to build PeskAAS; an adaptable and scalable digital application that enables the collation, classification, analysis and visualisation of small-scale fisheries catch and effort data. We piloted and refined this system in Timor-Leste; a small island developing nation. The features that make PeskAAS fit for purpose are that it is: (i) fully open-source and free to use (ii) component-based, flexible and able to integrate vessel tracking data with catch records; (iii) able to perform spatial and temporal filtering of fishing productivity by fishing method and habitat; (iv) integrated with species-specific length-weight parameters from FishBase; (v) controlled through a click-button dashboard, that was co-designed with fisheries scientists and government managers, that enables easy to read data summaries and interpretation of context-specific fisheries data. With limited training and code adaptation, the PeskAAS workflow has been used as a framework on which to build and adapt systematic, standardised data collection for small-scale fisheries in other contexts. Automated analytics of these data can provide fishers, managers and researchers with insights into a fisher's experience of fishing efforts, fisheries status, catch rates, economic efficiency and geographic preferences and limits that can potentially guide management and livelihood investments.
    Matched MeSH terms: Workflow
  13. Mohd Ridzwan SF, Bhoo-Pathy N, Isahak M, Wee LH
    Heliyon, 2019 Sep;5(9):e02478.
    PMID: 31687573 DOI: 10.1016/j.heliyon.2019.e02478
    Background: Radioprotective garments protect medical radiation workers from exposure to radiation at workplace. However, previous studies have found poor adherence to the use of radioprotective garments.

    Objectives: We explored the perceptions and practices related to the use of radioprotective garments among medical radiation workers in public hospitals, and sought to understand the reasons for non-adherence.

    Design and setting: A qualitative approach was applied by conducting face-to-face in-depth interviews with 18 medical radiation workers from three university hospitals using a semi-structured interview guide.

    Results: Five themes emerged with respect to perceptions on the use of radioprotective garments: (i) the dilemmas in practising radiation protection, (ii) indication of workers' credibility, (iii) physical appearance of radioprotective garments, (iv) practicality of radioprotective garment use, and (v) impact on workflow. Actual lack of radioprotective garment use was attributed to inadequate number of thyroid shield and other garments, radioprotective garments' unsightly appearance including being dirty and defective, impracticality of using radioprotective garments for some nuclear medicine procedures, disruption of workflow because of workers' limited movements, attitudes of workers, and organisational influences.

    Conclusion: Medical radiation workers demonstrated a definitive practice of using radioprotective aprons, but often neglected to use thyroid shields and other garments. Availability and hygiene are reported as the core issues, while unclear guidelines on practical use of radioprotective garments appear to lead to confusion among medical radiation workers. To the best of our knowledge, this is the first qualitative study of its kind from a middle-income Asian setting.

    Matched MeSH terms: Workflow
  14. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Workflow
  15. Anuar Ithnin, Kong, Dinnee, Venkataraman, Saraswathy
    Int J Public Health Res, 2012;2(2):137-143.
    MyJurnal
    Carpal tunnel syndrome (CTS) is a hand disorder which indicates the presence of symptoms such as pain, numbness, and muscle weakness among the patient. CTS is an occupational related disorder which can occur in any profession. However, it can be prevented and managed. The aims of the research were to determine the prevalence of acquiring CTS among nurses who worked in the wards and occupational risk factors involving the upper limbs during nursing tasks performance. The specific aims were to determine the relationship between the prevalence of acquiring CTS and individual factors (age, gender, race, educational level, duration of work and medical history), relationship between the prevalence of acquiring CTS and occupational risk factors in nursing tasks. Nurses profession was chosen as they are performing multitask involving upper limbs especially the wrist joints. Boston Carpal Tunnel Syndrome Questionnaire (BCTQ) was used to determine the level of severity in CTS. Occupational risk factors were assessed by using the Rapid Upper Limb Assessment (RULA). This research was a cross sectional mode which was carried out at a government university medical centre from November through December 2010. Eighty nurses were involved in the research. The respondents were required to fill in the socio-demographic information sheet. Those having CTS were required to fill in the BCTQ. Assessments were performed by observing of the job activity through RULA. The results showed that the prevalence for nurses acquiring CTS is 7.5%. The RULA assessment also indicated that the risk factor was in the highest level with a score of 7. No relationship was shown between the prevalence of CTS and race, gender, educational level and medical history. Significant relationship was indicated by the prevalence of CTS and occupational risk factors. In conclusion, a significant prevalence of CTS related to age of more than 30 years old, Malay races compared to Indian, working experience of more than 10 years and respondents with right hand dominant. Occupational risk factors also indicated among the active nurses. Therefore, it is important for us to modify the work environment, work flow, work methodology and ergonomic factors in order to prevent the nurses from acquiring CTS. Furthermore, education about the condition of CTS should be implemented and reinforced especially among the higher risk nurses.
    Matched MeSH terms: Workflow
  16. Chua EW, Ng PY
    Front Pharmacol, 2016;7:156.
    PMID: 27378921 DOI: 10.3389/fphar.2016.00156
    The launch of the MinION Access Program has caused much activity within the scientific community. MinION represents a keenly anticipated, novel addition to the current melange of commercial sequencers. Driven by the nanopore sequencing mechanism that requires minimal sample manipulation, the device is capable of generating long sequence reads in sizes (up to or exceeding 50 kb) that surpass those of all other platforms. One notable advantage of this feature is that long-range haplotypes can be more accurately resolved; such advantage is particularly pertinent to the genotyping of complex loci such as genes encoding the human leukocyte antigens, which are pivotal determinants of drug hypersensitivity. With this timely, albeit brief, review, we set out to examine the applications on which MinION has been tested thus far, the bioinformatics workflow tailored to the unique characteristics of its extended sequence reads, the device's potential utility in the detection of genetic markers for drug hypersensitivity, and how it may eventually evolve to become fit for diagnostic purposes in the clinical setting.
    Matched MeSH terms: Workflow
  17. Zulkapli NA, Sobi S, Mohd Zubaidi NA, Abdullah JM
    Malays J Med Sci, 2016 Jul;23(4):1-4.
    PMID: 27660539 DOI: 10.21315/mjms2016.23.4.1
    The Malaysian Journal of Medical Sciences (MJMS) has conducted a simple analysis of its scholarly publication, based on the auto-generated data compiled from ScholarOne Manuscripts(™), an innovative, web-based, submission and peer-review workflow solution for scholarly publishers. The performance of the MJMS from 2014-2015 is reported on in this editorial, with a focus on the pattern of manuscript submission, geographical contributors and the acceptance-rejection rate. The total number of manuscript submissions has increased from 264 in 2014, to 272 in 2015. Malaysians are the main contributors to the MJMS. The total number of manuscript rejections following the review process was 79 (29.9%) in 2014, increasing to 92 (33.8%) the following year, in accordance with the exacting quality control criteria applied by the journal's editor to the submitted manuscripts.
    Matched MeSH terms: Workflow
  18. Agbolade O, Nazri A, Yaakob R, Ghani AAA, Cheah YK
    PeerJ Comput Sci, 2020;6:e249.
    PMID: 33816901 DOI: 10.7717/peerj-cs.249
    Over the years, neuroscientists and psychophysicists have been asking whether data acquisition for facial analysis should be performed holistically or with local feature analysis. This has led to various advanced methods of face recognition being proposed, and especially techniques using facial landmarks. The current facial landmark methods in 3D involve a mathematically complex and time-consuming workflow involving semi-landmark sliding tasks. This paper proposes a homologous multi-point warping for 3D facial landmarking, which is verified experimentally on each of the target objects in a given dataset using 500 landmarks (16 anatomical fixed points and 484 sliding semi-landmarks). This is achieved by building a template mesh as a reference object and applying this template to each of the targets in three datasets using an artificial deformation approach. The semi-landmarks are subjected to sliding along tangents to the curves or surfaces until the bending energy between a template and a target form is minimal. The results indicate that our method can be used to investigate shape variation for multiple datasets when implemented on three databases (Stirling, FRGC and Bosphorus).
    Matched MeSH terms: Workflow
  19. Aung SW, Abu Kasim NH, Ramasamy TS
    Methods Mol Biol, 2019;2045:323-335.
    PMID: 31201682 DOI: 10.1007/7651_2019_242
    The therapeutic potential of human mesenchymal stromal stem cells (hMSCs) for cell-based therapeutic is greatly influenced by the in vitro culture condition including the culture conditions. Nevertheless, there are many technical challenges needed to be overcome prior to the clinical use including the quantity, quality, and heterogeneity of the cells. Therefore, it is necessary to develop a stem cell culture procedure or protocol for cell expansion in order to generate reproducible and high-quality cells in accordance with good manufacturing practice for clinical and therapeutic purposes. Here we assessed the MSCs characteristic of human Wharton's jelly mesenchymal stromal cells in in vitro culture according to the criteria established by the International Society for Cellular Therapy. Besides, the viability of the WJMSCs was determined in order to increase the confidence that the cells are employed to meet the therapeutic efficacy.
    Matched MeSH terms: Workflow
  20. Abd Elaziz M, Abualigah L, Ibrahim RA, Attiya I
    Comput Intell Neurosci, 2021;2021:9114113.
    PMID: 34976046 DOI: 10.1155/2021/9114113
    Instead of the cloud, the Internet of things (IoT) activities are offloaded into fog computing to boost the quality of services (QoSs) needed by many applications. However, the availability of continuous computing resources on fog computing servers is one of the restrictions for IoT applications since transmitting the large amount of data generated using IoT devices would create network traffic and cause an increase in computational overhead. Therefore, task scheduling is the main problem that needs to be solved efficiently. This study proposes an energy-aware model using an enhanced arithmetic optimization algorithm (AOA) method called AOAM, which addresses fog computing's job scheduling problem to maximize users' QoSs by maximizing the makespan measure. In the proposed AOAM, we enhanced the conventional AOA searchability using the marine predators algorithm (MPA) search operators to address the diversity of the used solutions and local optimum problems. The proposed AOAM is validated using several parameters, including various clients, data centers, hosts, virtual machines, tasks, and standard evaluation measures, including the energy and makespan. The obtained results are compared with other state-of-the-art methods; it showed that AOAM is promising and solved task scheduling effectively compared with the other comparative methods.
    Matched MeSH terms: Workflow
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links