OBJECTIVES: Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection.
METHODS: The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively.
RESULTS: When used as a post-treatment, BDHBC (EC50: 4.19 µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24 µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment.
CONCLUSION: BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.
OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.
METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.
RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P