AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.
RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.
CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.
METHODS: In the present study, eight VDR single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 500 COVID-19 patients in Iran, including 160 asymptomatic, 250 mild/moderate, and 90 severe/critical cases. The association of these polymorphisms with severity, clinical outcomes, and comorbidities were evaluated through the calculation of the Odds ratio (OR).
RESULTS: Interestingly, significant associations were disclosed for some of the SNP-related alleles and/or genotypes in one or more genetic models with different clinical data in COVID-19 patients. Significant association of VDR-SNPs with signs, symptoms, and comorbidities was as follows: ApaI with shortness of breath (P ˂ 0.001) and asthma (P = 0.034) in severe/critical patients (group III); BsmI with chronic renal disease (P = 0.010) in mild/moderate patients (group II); Tru9I with vomiting (P = 0.031), shortness of breath (P = 0.04), and hypertension (P = 0.030); FokI with fever and hypertension (P = 0.027) in severe/critical patients (group III); CDX2 with shortness of breath (P = 0.022), hypertension (P = 0.036), and diabetes (P = 0.042) in severe/critical patients (group III); EcoRV with diabetes (P ˂ 0.001 and P = 0.045 in mild/moderate patients (group II) and severe/critical patients (group III), respectively). However, the association of VDR TaqI and BglI polymorphisms with clinical symptoms and comorbidities in COVID-19 patients was not significant.
CONCLUSION: VDR gene polymorphisms might play critical roles in the vulnerability to infection and severity of COVID-19, probably by altering the risk of comorbidities. However, these results require further validation in larger studies with different ethnicities and geographical regions.
METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.
RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.
CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .
OBJECTIVE: To develop international WC percentile cutoffs for children and adolescents with normal weight based on data from 8 countries in different global regions and to examine the relation with cardiovascular risk.
DESIGN AND SETTING: We used pooled data on WC in 113,453 children and adolescents (males 50.2%) aged 4 to 20 years from 8 countries in different regions (Bulgaria, China, Iran, Korea, Malaysia, Poland, Seychelles, and Switzerland). We calculated WC percentile cutoffs in samples including or excluding children with obesity, overweight, or underweight. WC percentiles were generated using the general additive model for location, scale, and shape (GAMLSS). We also estimated the predictive power of the WC 90th percentile cutoffs to predict cardiovascular risk using receiver operator characteristics curve analysis based on data from 3 countries that had available data (China, Iran, and Korea). We also examined which WC percentiles linked with WC cutoffs for central obesity in adults (at age of 18 years).
MAIN OUTCOME MEASURE: WC measured based on recommendation by the World Health Organization.
RESULTS: We validated the performance of the age- and sex-specific 90th percentile WC cutoffs calculated in children and adolescents (6-18 years of age) with normal weight (excluding youth with obesity, overweight, or underweight) by linking the percentile with cardiovascular risk (area under the curve [AUC]: 0.69 for boys; 0.63 for girls). In addition, WC percentile among normal weight children linked relatively well with established WC cutoffs for central obesity in adults (eg, AUC in US adolescents: 0.71 for boys; 0.68 for girls).
CONCLUSION: The international WC cutoffs developed in this study could be useful to screen central obesity in children and adolescents aged 6 to 18 years and allow direct comparison of WC distributions between populations and over time.
STUDY DESIGN: The present study was conducted on 151 women with gynecological cancers as the case group and 152 healthy women with no history of such cancers as control group. The dematographic details of participants from both control and case groups were collected using a checklist, and the pattern of their fingerprints was prepared and examined. The data were analyzed for their significance using chi-square test and t- test. Odds ratio with 95% confidence intervals were calculated.
RESULTS: Dermatoglyphic analysis showed that arch and loop patterns significantly changed in cases group as compared to control. However, the odds ratio suggested that loop pattern in 6 or more fingers might be a risk factor for developing gynecological cancers.
CONCLUSION: Our results showed that there is an association between fingerprint patterns and gynecological cancers and so, dermatoglyphic analysis may aid in the early diagnosis of these cancers.
METHOD: The study applied a quantitative approach based on the cross-sectional survey design and multistage cluster random sampling. A total of 400 women aged 35-69 years, were surveyed at 4 obstetric and gynecologic clinics affiliated to Tehran University of Medical Sciences in Tehran: the participation levels of 86 women who have had a mammogram were analyzed based on their self-efficacy, belief, social influence, and barriers concerning mammography utilization.
RESULTS: Consistent with the study framework, in bivariate analysis, the higher level of women's participation in breast cancer prevention programs was significantly related to more positive belief about mammography (p< .05), greater social influence on mammography (p< .01) and fewer barriers to mammography (p< .01). Self efficacy (p= .114) was not significantly related to the higher level of participation.
CONCLUSION: Results suggest that women's participation levels in breast cancer prevention programs might be associated with the specific psychosocial factors on breast cancer preventive behavior such as mammography screening.