METHODS: Patients undergoing curative resection for oesophageal cancer were identified from the international Oesophagogastric Anastomosis Audit (OGAA) from April 2018-December 2018. Definitions for AL and CN were those set out by the Oesophageal Complications Consensus Group. Univariate and multivariate analyses were performed to identify risk factors for both AL and CN. A risk score was then produced for both AL and CN using the derivation set, then internally validated using the validation set.
RESULTS: This study included 2247 oesophagectomies across 137 hospitals in 41 countries. The AL rate was 14.2% and CN rate was 2.7%. Preoperative factors that were independent predictors of AL were cardiovascular comorbidity and chronic obstructive pulmonary disease. The risk scoring model showed insufficient predictive ability in internal validation (area under the receiver-operating-characteristic curve [AUROC] = 0.618). Preoperative factors that were independent predictors of CN were: body mass index, Eastern Cooperative Oncology Group performance status, previous myocardial infarction and smoking history. These were converted into a risk-scoring model and internally validated using the validation set with an AUROC of 0.775.
CONCLUSION: Despite a large dataset, AL proves difficult to predict using preoperative factors. The risk-scoring model for CN provides an internally validated tool to estimate a patient's risk preoperatively.
METHODS: A six-year retrospective review at our institution on adult patients with TB and malignant-PPL diagnosed from rEBUS procedure from October 1, 2016, to December 31, 2022. Clinical, radiological, procedural, histological and microbiological data were extracted and analysed.
RESULTS: 387 PPLs were included in our cohort, 32 % were TB-PPL and 68 % were malignant-PPL. The median age was 63 (IQR 55-70) years, with the TB-PPL group significantly younger. The median size of the target lesion was 2.90 (IQR 2.26-4.00) cm. The overall rEBUS diagnostic yield was 85.3 %, with a 1.3 % pneumothorax risk. Multivariate analysis identified independent predictors for TB-PPL, including age <60 years (adj OR 2.635), target lesion size <2 cm (adj OR 2.385), upper lobe location (adj OR 2.020), presence of a cavity on pre-procedural CT (adj OR 4.186), and presence of rEBUS bronchogram (adj OR 2.722). These variables achieved an area under the curve of 0.729 (95 % CI 0.673-0.795) with a diagnostic accuracy of 75.49 % (95 % CI 70.68-79.88).
CONCLUSIONS: Despite non-specific radiological findings in TB-PPL, our study identifies younger age, target lesion size less than 2 cm, upper lobe location, the presence of cavitation, and rEBUS bronchogram were independent clinical predictors for TB-PPL. This prediction model potentially helps mitigate the risk of accidental TB exposure during bronchoscopic procedures. A future prospective cohort study to validate these findings is essential to allow proper triaging of patient planning for rEBUS procedure.
MATERIALS AND METHODS: E-cadherin and Galectin-9 expression was examined by immunohistochemistry in 32 cases of OSCC of the buccal mucosa (13 with and 19 without lymph node metastasis), as well as 6 samples of reactive lesions and 5 of normal buccal mucosa.
RESULTS: The expression of E-cadherin in OSCC was significantly lower than the control tissues but galectin-9 expression was conversely higher. Median E-cadherin HSCOREs between OSCCs positive and negative for nodal metastasis were not significantly different. Mean HSCOREs for galectin-9 in OSCC without lymph node metastasis (127.7 ± 81.8) was higher than OSCC with lymph node metastasis (97.9 ± 62.9) but this difference was not statistically significant.
CONCLUSIONS: E-cadherin expression is reduced whilst galectin-9 expression is increased in OSCC. However, the present results suggest that E-cadherin and galectin-9 expression may not be useful as prognostic markers for OSCC.
METHODS: Patients who underwent major ablative surgery of the head and neck region with neck dissection were identified and clinical records were assessed. Inclusion criteria were stage I-IV oral and oropharyngeal malignancies necessitating resection with or without radiotherapy from 2004 to 2009. All individuals had a pre-operative assessment prior to the surgery. The post operative assessment period ranged from 1 year to 5 years. Survival distributions were analyzed using Kaplan-Meier curves.
RESULTS: 87 patients (males:38%; females:62%) were included in this study, with an age range of 21-85 years. Some 78% underwent neck dissections while 63% had surgery and radiotherapy. Nodal recurrence was detected in 5.7% while 20.5% had primary site recurrence within the study period. Kaplan-Meier survival analysis revealed that the median survival time was 57 months. One year overall survival (OS) rate was 72.7% and three year overall survival rate dropped to 61.5%. On OS analysis, the log-rank test showed a significant difference of survival between Malay and Chinese patients (Bonferroni correction p=0.033). Recurrence-free survival (RFS) analysis revealed that 25% of the patients have reached the event of recurrence at 46 months. One year RFS rate was 85.2% and the three year survival rate was 76.1%. In the RFS analysis, the log-rank test showed a significant difference in the event of recurrence and nodal metastasis (p<0.001).
CONCLUSION: Conservative neck is effective, in conjunction with postoperative radiotherapy, for control of neck metastases. Ethnicity appears to influence the survival of the patients, but a prospective trial is required to validate this.
OBJECTIVE: To explore the feasibility of using cyclin D1 as a prognostic marker in tongue and cheek SCC by the fluorescent-in-situ hybridization (FISH) method.
METHODS: Fifty paraffin-embedded samples (25 each of cheek and tongue SCCs) were obtained from the archives of the Oral Pathology Diagnostic Laboratory. Sociodemographic data, histopathologic diagnoses, lymph node status and survival data were obtained from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS)coordinated by the Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya. The FISH technique was used to detect the amplification of cyclin D1 using the Vysis protocol. Statistical correlations of cyclin D1 with site and lymph node status were analyzed using the Fisher exact test. Kaplan-Meier and Log Rank (Mantel-Cox) test were used to analyze cyclin D1 amplification and median survival time.
RESULTS: Positive amplification of cyclin D1 was detected in 72% (36) of OSCCs. Detection of positive amplification for cyclin D1 was observed in 88% (22) and 56% (14) of the tongue and cheek tumors, respectively, where the difference was statistically significant (P=0.012). Lymph node metastasis of cheek SCCs showed a trend towards a significant association (P= 0.098) with cyclin D1 amplification whereas the lymph node metastasis of tongue SCC was clearly not significant (P=0.593).There was a statistically significant correlation between cyclin D1 positivity and survival rate (P=0.009) for overall SCC cases and (P<0.001) for cheek SCC cases.
CONCLUSION: The present study found that cyclin D1 amplification may differ in different subsites of OSCC (tongue vs cheek) and its positive amplification implies an overall poor survival in OSCCs, particularly those arising in cheeks.