Materials and Methods: The study comprised 20 patients in Group I presenting with various symptoms of gastritis and 10 asymptomatic subjects in Group II. The intestinal endoscopy antral biopsies were collected from 20 symptomatic patients with gastroduodenal disorders. The saliva specimens were taken from all patients before endoscopy. PCR was performed using genomic DNA, isolated from the saliva and the biopsies of the patients as the template to detect the presence of the 16S ribosomal RNA gene in H. pylori.
Results: In Group I, 10 (50%) cases of clinical gastritis were positive for H. pylori by endoscopy biopsy and 10 (50%) were negative. Of the 10 endoscopy biopsy positive cases for H. pylori, eight were PCR positive in saliva and two were negative. Of the 10 endoscopy biopsy negative cases, three were PCR positive for H. pylori in saliva and seven were negative. In Groups II, four were symptomatic for gastritis and six were negative. Of the six gastritis negative cases, three were PCR positive, four were gastritis positive, and three were PCR positive. Sensitivity and specificity of PCR were found to be 80% and 70%, respectively. The positive predictive and negative predictive values of PCR in saliva were 72.7% and 77.7%, respectively.
Conclusion: PCR analysis of saliva may be handy in identification of H. pylori and serves as a noninvasive technique to diagnose and monitor the prognosis.
OBJECTIVE: We aimed to compare the phytochemical composition of 7 varieties growing in different conditions at various geographical locations. We also aimed to establish the quality control markers for the authentication of these varieties.
METHODS: We applied untargeted UHPLC-TOFMS metabolomics to discriminate 100 leaf samples of F. deltoidea collected from 6 locations in Malaysia. A genetic analysis on 21 leaf samples was also performed to validate the chemotaxonomy differentiation.
RESULTS: The PCA and HCA analysis revealed the existence of 3 chemotypes based on the differentiation in the flavonoid content. The PLS-DA analysis identified 15 glycosylated flavone markers together with 1 furanocoumarin. These markers were always consistent for the respective varieties, regardless of the geographical locations and growing conditions. The chemotaxonomy differentiation was in agreement with the DNA sequencing. In particular, var. bilobata accession which showed divergent morphology was also differentiated by the chemical fingerprints and genotype.
CONCLUSION: Chemotype differentiation based on the flavonoid fingerprints along with the proposed markers provide a powerful identification tool to complement morphology and genetic analyses for the quality control of raw materials and products from F. deltoidea.