Displaying publications 2081 - 2100 of 3446 in total

Abstract:
Sort:
  1. Gan HM, Linton SM, Austin CM
    Mar Genomics, 2019 Jun;45:64-71.
    PMID: 30928201 DOI: 10.1016/j.margen.2019.02.002
    Despite recent advances in sequencing technology, a complete mitogenome assembly is still unavailable for the gecarcinid land crabs that include the iconic Christmas Island red crab (Gecarcoidea natalis) which is known for its high population density, annual mass breeding migration and ecological significance in maintaining rainforest structure. Using sequences generated from Nanopore and Illumina platforms, we assembled the complete mitogenome for G. natalis, the first for the genus and only second for the family Gecarcinidae. Nine Nanopore long reads representing 0.15% of the sequencing output from an overnight MinION Nanopore run were aligned to the mitogenome. Two of them were >10 kb and combined are sufficient to span the entire G. natalis mitogenome. The use of Illumina genome skimming data only resulted in a fragmented assembly that can be attributed to low to zero sequencing coverage in multiple high AT-regions including the mitochondrial protein-coding genes (NAD4 and NAD5), 16S ribosomal rRNA and non-coding control region. Supplementing the mitogenome assembly with previously acquired transcriptome dataset containing high abundance of mitochondrial transcripts improved mitogenome sequence coverage and assembly reliability. We then inferred the phylogeny of the Eubrachyura using Maximum Likelihood and Bayesian approaches, confirming the phylogenetic placement of G. natalis within the family Gecarcinidae based on whole mitogenome alignment. Given the substantial impact of AT-content on mitogenome assembly and the value of complete mitogenomes in phylogenetic and comparative studies, we recommend that future mitogenome sequencing projects consider generating a modest amount of Nanopore long reads to facilitate the closing of problematic and fragmented mitogenome assemblies.
    Matched MeSH terms: Sequence Analysis, DNA
  2. Tan WC, Lim SJ, Wan Aida Wan Mustapha
    Sains Malaysiana, 2017;46:439-448.
    Dalam kajian ini, bakteria asid laktik (LAB) serta sebatian aroma ikan pekasam daripada spesies yang berbeza
    ditentukan. Persampelan ikan pekasam iaitu tilapia, loma, lampam, sepat dan gelama diperoleh daripada pembekal
    Perusahaan Ikan Pekasam Kiah di Kuala Kangsar, Perak. Penentuan spesies LAB dijalankan melalui kaedah pencairan
    bersiri, pengkulturan LAB, ujian katalase, ujian pewarnaan spora serta ujian pengesanan Gram bakteria dan morfologi.
    Pengesahan spesies LAB dijalankan melalui pengekstrakan asid deoksiribonukleik (DNA), amplifikasi dengan tindak
    balas rantaian polimerasi (PCR), analisis elektroforesis gel dan penjujukan DNA. Hasil jujukan DNA yang diperoleh
    dibandingkan dengan jujukan dalam pangkalan data GenBank di NCBI menggunakan BLAST. Didapati Lactobacillus
    brevis KB290 DNA dan Lactobacillus casei W56 wujud dalam pekasam tilapia, Lactobacillus plantarum 16 dalam
    pekasam lampam, Lactobacillus casei BD-II kromosom dan Lactobacillus plantarum WCFS1 dalam pekasam sepat,
    Corynebacterium vitaeruminis DSM 20294 dan Streptococcus anginosus C1051 dalam pekasam gelama. Manakala
    Staphylococcus carnosus subsp. carnosus TM300 kromosom adalah LAB dominan dalam pekasam loma. Sementara
    itu, sebatian aroma ditentukan melalui kaedah pengekstrakan cecair menggunakan pelarut metanol dan heksana.
    Pemprofilan sebatian aroma dijalankan dengan kromatografi gas-spektometer jisim (GC-MS). Sebatian aroma dalam
    ekstrak metanol dan heksana daripada lima jenis ikan pekasam dibandingkan. Bilangan sebatian aroma yang diekstrak
    menggunakan metanol adalah lebih banyak berbanding dengan yang menggunakan heksana. Sebatian aroma yang
    paling banyak dikesan adalah daripada pekasam loma. Asid karboksilik merupakan sebatian yang paling dominan
    dalam ikan pekasam dan memberi bau hamis serta tengik.
    Matched MeSH terms: DNA
  3. Jeffrine J. Rovie-Ryan, Millawati Gani, Norsyamimi Rosli, Han Ming Gan, Gilmoore G. Bolongon, Tan Cheng Cheng, et al.
    Sains Malaysiana, 2018;47:2533-2542.
    Slow lorises (Nycticebus) consist of eight species native to Southeast Asia while three species are recognised in
    Malaysia - N. coucang, N. menagensis and N. kayan. This study reports on the rediscovery of the subspecies N. coucang
    insularis Robinson, 1917 in Tioman Island and the genetic assessment of its mitochondrial DNA variation. Morphological
    measurements conform the specimen as the putative N. coucang but with distinct colour and markings. Two mitochondrial
    DNA segments (cytochrome b and control region) were produced from the subspecies representing their first registered
    sequences in GenBank. Genetically, the subspecies showed 99% of nucleotide similarity to N. coucang species type for
    both the DNA segments and constitute its own unique haplotype. Phylogenetic trees constructed using three methods
    (neighbour joining, maximum likelihood and Bayesian inference) showed two major groups within Nycticebus; the
    basal group was formed by N. pygmaeus while the second group consisted of the remaining Nycticebus species. The
    phylogenetic position of the subspecies, however, remains unresolved due to the observed mixing between N. coucang and
    N. bengalensis. Several reasons could lead to this condition including the lack of well documented voucher specimens and
    the short DNA fragments used. In addition, the possibility of hybridisation event between N. coucang and N. bengalensis
    could not be excluded as a possible explanation since both species occur sympatrically at the Isthmus of Kra region
    until the Thailand-Malaysia border. The rediscovery of this subspecies displays the unique faunal diversity that justifies
    the importance of Tioman Island as a protected area.
    Matched MeSH terms: DNA, Mitochondrial
  4. Chang W, Ee-Uli J, Ng WL, Rovie-Ryan JJ, Tan SG, Yong CSY
    Sci Rep, 2019 06 11;9(1):8504.
    PMID: 31186469 DOI: 10.1038/s41598-019-44870-4
    Macaca fascicularis, also known as the cynomolgus macaque, is an important non-human primate animal model used in biomedical research. It is an Old-World primate widely distributed in Southeast Asia and is one of the most abundant macaque species in Malaysia. However, the genetic structure of wild cynomolgus macaque populations in Malaysia has not been thoroughly elucidated. In this study, we developed genic-simple sequence repeat (genic-SSR) markers from an in-house transcriptome dataset generated from the Malaysian cynomolgus macaque via RNA sequencing, and applied these markers on 26 cynomolgus macaque individuals. A collection of 14,751 genic-SSRs were identified, where 13,709 were perfect SSRs. Dinucleotide repeats were the most common repeat motifs with a frequency of 65.05%, followed by trinucleotide repeats (20.55%). Subsequently, we designed 300 pairs of primers based on perfect di- and trinucleotide SSRs, in which 105 SSRs were associated with functional genes. A subset of 30 SSR markers were randomly selected and validated, yielding 19 polymorphic markers with an average polymorphism information content value of 0.431. The development of genic-SSR markers in this study is indeed timely to provide useful markers for functional and population genetic studies of the cynomolgus macaque and other related non-human primate species.
    Matched MeSH terms: DNA Primers
  5. Nurul Ashikeen Ab Razak, Mustafa Abdul Rahman, Tuen AA
    Sains Malaysiana, 2016;45:1089-1095.
    Family Scolopacidae includes the sandpipers, shanks, snipes, godwits and curlews. Systematic classifications of shorebirds
    at the higher level have been successfully resolved. Nevertheless, the phylogeny of shorebirds in the familial level is still
    poorly understood. Thus, this phylogenetic study on Scolopacidae was conducted upon the framework provided by the first
    sequence-based species-level phylogeny within the shorebirds to determine the phylogenetic relationships among family
    members of Scolopacidae in West Borneo, Sarawak using combined gene markers, mtDNA Cytochrome Oxidise I (COI)
    and nucDNA Recombinant Activating Gene 1 (RAG1). A total of 1,342 base pair (bp) were inferred from both COI and RAG1
    gene from 45 sequences constituted of 15 species Scolopacidae sampled from Sarawak namely Xenus cinereus, Actitis
    hypoleucos, Tringa totanus, Tringa glareola, Tringa stagnatilis, Heteroscelus brevipes, Calidris alba, Calidris ruficollis,
    Calidris ferruginea, Calidris tenuirostris, Calidris alpina, Gallinago stenura, Gallinago megala, Numenius arquata, and
    Numenius phaeopus. The phylogenetic tree was constructed with Charadrius mongulus derived as an outgroup. The
    Bayesian Inference (BI) tree constructed supported grouping of species into several lineages of Numeniinae, Calidrinae,
    Scolopacinae and Tringinae. The groupings of species into several lineages correlate with morphological features that
    contribute to their adaptation and ability of the species to fit to their ecosystems.
    Matched MeSH terms: DNA, Mitochondrial
  6. Mustafa MF, Fakurazi S, Abdullah MA, Maniam S
    Genes (Basel), 2020 02 12;11(2).
    PMID: 32059522 DOI: 10.3390/genes11020192
    Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10-17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.
    Matched MeSH terms: DNA, Mitochondrial
  7. Kofi AE, Hakim HM, Khan HO, Ismail SA, Ghansah A, Haslindawaty ARN, et al.
    Data Brief, 2020 Aug;31:105746.
    PMID: 32490095 DOI: 10.1016/j.dib.2020.105746
    Short tandem repeat (STR) loci are widely used as genetic marker for ancestral and forensic analyses. The latter application includes for paternity testing and DNA profiling of samples collected from scenes of crime and suspects. This survey provides the first dataset for 21 STR loci across the Akan population in Ghana by genotyping of 109 unrelated healthy individuals using Investigator 24plex kit. None of the STR loci screened deviated from Hardy-Weinberg equilibrium after applying Bonferroni correction. Overall, 224 unique alleles were observed with allele frequencies ranging from 0.005 to 0.518. The combined match probability, combined power of exclusion and combined power discrimination were 1 in 4.07 × 10-25, 0.999999999 and 1, respectively. Principal coordinate analysis carried out using 21 STR allele frequency data mapped the Akans with Nigerian subpopulation groups (Hausa, Igbo and Yoruba), but separated from Thais of Thailand, Chechen of Jordan and Tijuana of Mexico.
    Matched MeSH terms: DNA Fingerprinting
  8. Mohd Izham NZ, Yusoff HM, Ul Haq Bhat I, Endo T, Fukumura H, Kwon E, et al.
    Data Brief, 2020 Jun;30:105568.
    PMID: 32368595 DOI: 10.1016/j.dib.2020.105568
    The structural investigation of synthesized compounds can be carried out by various spectroscopic techniques. It is an important prospect in order to elucidate the structure of the desired products before being further utilized. The preparation of new p-nitro stilbene Schiff base derivatives as an electrochemical DNA potential spacer was synthesized using (E)-4-(4-nitrostyryl)aniline from Heck reaction with aldehydes in ethanolic solution. The data presented here in this article contains FTIR, UV-Vis and 1H and 13C NMR of (E)-4-(4-nitrostyryl)aniline and nitrostyryl aniline derivatives.
    Matched MeSH terms: DNA, Intergenic
  9. Mat Nanyan NSB, Takagi H
    Front Genet, 2020;11:438.
    PMID: 32411186 DOI: 10.3389/fgene.2020.00438
    Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
    Matched MeSH terms: DNA-Binding Proteins
  10. Baharudin MMA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, et al.
    PLoS One, 2021;16(5):e0251514.
    PMID: 33974665 DOI: 10.1371/journal.pone.0251514
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA Gyrase/genetics
  11. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

    Matched MeSH terms: DNA Primers
  12. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
    Matched MeSH terms: DNA, Single-Stranded
  13. Shahzad S, Batool Z, Afzal A, Haider S
    Metab Brain Dis, 2022 Dec;37(8):2793-2805.
    PMID: 36152087 DOI: 10.1007/s11011-022-01090-6
    Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.
    Matched MeSH terms: DNA Fragmentation
  14. Ng YH, Fong MY, Subramaniam V, Shahari S, Lau YL
    Res Vet Sci, 2015 Dec;103:201-4.
    PMID: 26679818 DOI: 10.1016/j.rvsc.2015.10.009
    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.
    Matched MeSH terms: DNA, Ribosomal
  15. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: DNA-Binding Proteins/antagonists & inhibitors; DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism*
  16. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: DNA/drug effects; DNA Damage/drug effects
  17. Zakaria Z, Othman N, Ismail A, Kamaluddin NR, Esa E, Abdul Rahman EJ, et al.
    Asian Pac J Cancer Prev, 2017 04 01;18(4):1169-1175.
    PMID: 28548470
    Background: ETV6/RUNX1 gene fusion is the most frequently seen chromosomal abnormality in childhood acute
    lymphobastic leukamia (ALL). However, additional genetic changes are known to be required for the development of
    this type of leukaemia. Therefore, we here aimed to assess the somatic mutational profile of four ALL cases carrying the
    ETV6/RUNX1 fusion gene using whole-exome sequencing. Methods: DNA was isolated from bone marrow samples
    using a QIAmp DNA Blood Mini kit and subsequently sequenced using the Illumina MiSeq system. Results: We
    identified 12,960 to17,601 mutations in each sample, with a total of 16,466 somatic mutations in total. Some 15,533
    variants were single nucleotide polymorphisms (SNPs), 129 were substitutions, 415 were insertions and 389 were
    deletions. When taking into account the coding region and protein impact, 1,875 variants were synonymous and 1,956
    were non-synonymous SNPs. Among non-synonymous SNPs, 1,862 were missense, 13 nonsense, 35 frameshifts, 11
    nonstop, 3 misstart, 15 splices disrupt and 17 in-frame indels. A total of 86 variants were located in leukaemia-related
    genes of which 32 variants were located in the coding regions of GLI2, SP140, GATA2, SMAD5, KMT2C, CDH17,
    CDX2, FLT3, PML and MOV10L1. Conclusions: Detection and identification of secondary genetic alterations are
    important in identifying new therapeutic targets and developing rationally designed treatment regimens with less
    toxicity in ALL patients.
    Matched MeSH terms: DNA
  18. Phung CC, Heng PS, Liew TS
    PeerJ, 2017;5:e3981.
    PMID: 29104827 DOI: 10.7717/peerj.3981
    Leptopoma is a species rich genus with approximately 100 species documented. Species-level identification in this group has been based on shell morphology and colouration, as well as some anatomical features based on small sample sizes. However, the implications of the inter- and intra-species variations in shell form to the taxonomy of Leptopoma species and the congruency of its current shell based taxonomy with its molecular phylogeny are still unclear. There are four Leptopoma species found in Sabah, Borneo, and their taxonomy status remains uncertain due to substantial variation in shell forms. This study focuses on the phylogenetic relationships and geographical variation in shell form of three Leptopoma species from Sabah. The phylogenetic relationship of these species was first estimated by performing Maximum Likelihood and Bayesian analysis based on mitochondrial genes (16S rDNA and COI) and nuclear gene (ITS-1). Then, a total of six quantitative shell characters (i.e., shell height, shell width, aperture height, aperture width, shell spire height, and ratio of shell height to width) and three qualitative shell characters (i.e., shell colour patterns, spiral ridges, and dark apertural band) of the specimens were mapped across the phylogenetic tree and tested for phylogenetic signals. Data on shell characters of Leptopoma sericatum and Leptopoma pellucidum from two different locations (i.e., Balambangan Island and Kinabatangan) where both species occurred sympatrically were then obtained to examine the geographical variations in shell form. The molecular phylogenetic analyses suggested that each of the three Leptopoma species was monophyletic and indicated congruence with only one of the shell characters (i.e., shell spiral ridges) in the current morphological-based classification. Although the geographical variation analyses suggested some of the shell characters indicating inter-species differences between the two Leptopoma species, these also pointed to intra-species differences between populations from different locations. This study on Leptopoma species is based on small sample size and the findings appear only applicable to Leptopoma species in Sabah. Nevertheless, we anticipate this study to be a starting point for more detailed investigations to include the other still little-known (ca. 100) Leptopoma species and highlights a need to assess variations in shell characters before they could be used in species classification.
    Matched MeSH terms: DNA, Ribosomal
  19. Umar S, Shinkafi SH, Hudu SA, Neela V, Suresh K, Nordin SA, et al.
    Ann Parasitol, 2017;63(2):133-139.
    PMID: 28822206 DOI: 10.17420/ap6302.97
    Schistosomiasis is the major source of morbidity in Sub-Saharan Africa and Asia. It is estimated that 207 million people are infected, of which 97% are in Africa. The aim of this study was the determining of prevalence as well as the phylogeny of S. haematobium among school children in Argungu Emirate, Kebbi State Nigeria. A total of 325 urine samples was collected from school children between 7 to 14 years. S. heamatobium eggs was examined under dissecting microscope and DNA was extracted from urine sample and COX1 gene was amplified by nested PCR. The PCR products were purified, sequenced and analysed. This study showed a prevalence of 32.09%, with male pupils having the highest prevalence. S. haematobium infections in children who fetch water in the river have 24 times higher risk of being infected while those who bath in the river have 158 times higher risk of being infected. Our sequences were phylogenetically related to S. haematobium isolate U82266 from Kenya and consistence with the predominant species in Africa. This was the first S. haematobium and S. mansoni co-infection reported in Nigeria. S. haematobium infection is prevalent among school age and significantly associated with water contact.
    Matched MeSH terms: DNA
  20. Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJA
    Saudi J Biol Sci, 2017 Sep;24(6):1212-1221.
    PMID: 28855814 DOI: 10.1016/j.sjbs.2014.09.017
    Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
    Matched MeSH terms: DNA
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links