Displaying publications 201 - 220 of 288 in total

Abstract:
Sort:
  1. Ng KH, Chin CS, Jalleh RD, Siar CH, Ngui CH, Singaram SP
    Oral Surg. Oral Med. Oral Pathol., 1991 Dec;72(6):685-8.
    PMID: 1812451
    Zygomycosis is an uncommon polymorphic fungal disease. One clinical subtype, nasofacial zygomycosis, is caused by infectious exposure to the organism Conidiobolus coronatus. A case affecting the nose and lips of a 42-year-old Malay man is reported here. The clinicopathologic features and management of this disease are described, and its differential diagnosis is discussed.
  2. Siar CH, Ng KH, Rasool S, Ram S, Abdul Jalil A, Ng KP
    J Oral Sci, 2003 Sep;45(3):161-4.
    PMID: 14650581
    Though oral candidosis is an opportunistic fungal infection that commonly affects immunocompromised patients, little is known of its occurrence as a complication of Non-Hodgkin's lymphoma. This paper reports a case of oral candidosis in a 20-year-old Indonesian woman with this lymphoproliferative disease. She presented with acute pseudomembranous candidosis on the dorsum and lateral borders of the tongue, bilateral angular cheilitis and cheilocandidosis. The latter is a rare clinical variant of oral candidosis, and the lesions affecting the vermilion borders presented as an admixture of superficial erosions, ulcers and white plaques. Clinical findings were confirmed with oral smears and swabs that demonstrated the presence of hyphae, pseudohyphae and blastospores, and colonies identified as Candida albicans. A culture from a saline rinse was also positive for multiple candidal colonies. Lip and oral lesions were managed with Nystatin. The lesions regressed with subsequent crusting on the lips, and overall reduction in oral thrush. As Non-Hodgkin's lymphoma is a neoplastic disease that produces a chronic immunosuppressive state, management of its oral complications, including those due to oral candidosis, is considered a long-term indication.
  3. Harun HH, Abdul Karim MK, Abbas Z, Abdul Rahman MA, Sabarudin A, Ng KH
    Diagnostics (Basel), 2020 Sep 09;10(9).
    PMID: 32917029 DOI: 10.3390/diagnostics10090681
    In this study, we aimed to estimate the probability of cancer risk induced by CT pulmonary angiography (CTPA) examinations concerning effective body diameter. One hundred patients who underwent CTPA examinations were recruited as subjects from a single institution in Kuala Lumpur. Subjects were categorized based on their effective diameter size, where 19-25, 25-28, and >28 cm categorized as Groups 1, 2, and 3, respectively. The mean value of the body diameter of the subjects was 26.82 ± 3.12 cm, with no significant differences found between male and female subjects. The risk of cancer in breast, lung, and liver organs was 0.009%, 0.007%, and 0.005% respectively. The volume-weighted CT dose index (CTDIvol) was underestimated, whereas the size-specific dose estimates (SSDEs) provided a more accurate description of the radiation dose and the risk of cancer. CTPA examinations are considered safe but it is essential to implement a protocol optimized following the As Low as Reasonably Achievable (ALARA) principle.
  4. Ng KH, Gan YS, Cheng CK, Liu KH, Liong ST
    Environ Pollut, 2020 Dec;267:115500.
    PMID: 33254722 DOI: 10.1016/j.envpol.2020.115500
    In predicting palm oil mill effluent (POME) degradation efficiency, previous developed quadratic model quantitatively evaluated the effects of O2 flowrate, TiO2 loadings and initial concentration of POME in labscale photocatalytic system, which however suffered from low generalization due to the overfitting behaviour. Evidently, high RMSE (131.61) and low R2 (-630.49) obtained indicates its insufficiency in describing POME degradation at unseen factor ranges, hence verified the fact of poor generalization. To overcome this issue, several models were developed via machine learning-assisted techniques, namely Gaussian Process Regression (GPR), Linear Regression (LR), Decision Tree (DT), Supported Vector Machine (SVM) and Regression Tree Ensemble (RTE), subsequently being assessed systematically. To achieve high generalization, all models were subjected to 'train-all-test-all' strategy, 5-fold and 10-fold cross validation. Specifically, GPR model was furnished with high accuracy in 'train-all-test-all' strategy, judging from its low RMSE (1.0394) and high R2 (0.9962), which however menaced by the risk of overfitting. In contrast, despite relatively poorer RMSE and R2 (1.7964 and 0.9886) obtained in 5-fold cross validation, GPR model was rendered with highest generalization, while sufficiently preserving its accuracy in development process. Besides, SVM and RTE models were also demonstrated promising R2 (0.9372 and 0.9208), which however shadowed by their high RMSEs (4.2174 and 4.7366). Furthermore, the extraordinary generalization of GPR model was coincidentally verified in 10-fold cross validation. The lowest RMSE (2.1624) and highest R2 (0.9835) obtained with feature number of 36 asserted its sufficiency in both generalization and accuracy prospect. Other models were all rendered with slight lower R2 (> 0.9), plausibly due to the higher RMSE (> 4.0). According to GPR model, optimized POME degradation (52.52%) can be obtained at 70 mL/min of O2, 70.0 g/L of TiO2 and 250 ppm of POME concentration, with only ∼3% error as compared to the actual data.
  5. Tan M, Mariapun S, Yip CH, Ng KH, Teo SH
    Phys Med Biol, 2019 01 31;64(3):035016.
    PMID: 30577031 DOI: 10.1088/1361-6560/aafabd
    Historically, breast cancer risk prediction models are based on mammographic density measures, which are dichotomous in nature and generally categorize each voxel or area of the breast parenchyma as 'dense' or 'not dense'. Using these conventional methods, the structural patterns or textural components of the breast tissue elements are not considered or ignored entirely. This study presents a novel method to predict breast cancer risk that combines new texture and mammographic density based image features. We performed a comprehensive study of the correlation of 944 new and conventional texture and mammographic density features with breast cancer risk on a cohort of Asian women. We studied 250 breast cancer cases and 250 controls matched at full-field digital mammography (FFDM) status for age, BMI and ethnicity. Stepwise regression analysis identified relevant features to be included in a linear discriminant analysis (LDA) classifier model, trained and tested using a leave-one-out based cross-validation method. The area under the receiver operating characteristic (AUC) and adjusted odds ratios (ORs) were used as the two performance assessment indices in our study. For the LDA trained classifier, the adjusted OR was 6.15 (95% confidence interval: 3.55-10.64) and for Volpara volumetric breast density, 1.10 (0.67-1.81). The AUC for the LDA trained classifier was 0.68 (0.64-0.73), compared to 0.52 (0.47-0.57) for Volpara volumetric breast density (p   
  6. Lai SY, Ng KH, Cheng CK, Nur H, Nurhadi M, Arumugam M
    Chemosphere, 2021 Jan;263:128244.
    PMID: 33297191 DOI: 10.1016/j.chemosphere.2020.128244
    Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth. Unfortunately, it suffers from a large bandgap energy, low specific surface area, low recoverability, and scarce utilization in narrow absorption range. Therefore, the pollutant degradation performance is not satisfactory. Consequently, multifarious research to enhance the photocatalytic performance of Keggin-based POMs were reported, viz. via novel modifications and functionalizations through a variety of materials, inclusive of, inter alia, metal oxides, transition metals, noble metals, and others. In order to advocate this emerging technology, current review work provides a systematic overview on recent advancement, initiated from the strategized synthetic methods, followed by hierarchical enhancement and intensification process, at the same time emphasizes on the fundamental working principles of Keggin-based POM nanocomposites. By reviewing and summarizing the efforts adopted global-wide, this review is ended with providing useful outlooks for future studies. It is also anticipated to shed light on producing Keggin-based POM nanocomposites with breakthrough visible- and solar-light-driven photocatalytic performance against recalcitrant organic waste.
  7. Mumin NA, Rahmat K, Fadzli F, Ramli MT, Westerhout CJ, Ramli N, et al.
    Sci Rep, 2019 02 06;9(1):1459.
    PMID: 30728394 DOI: 10.1038/s41598-018-37451-4
    Synthesized 2D images can be reconstructed from tomosynthesis images in breast imaging. This study aims to investigate the diagnostic efficacy of synthesized 2D images (C-View) in comparison to full field digital mammography (FFDM) when used with digital breast tomosynthesis (DBT) in multi-ethnic Malaysian population. FFDM and C-View images (n = 380) were independently evaluated by three readers through Breast Imaging Reporting and Data System (BI-RADS) categorisation, breast density and lesion characterisation. Statistical analysis was done comparing sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of C-View + DBT with FFDM + DBT as standard of reference. Very good interreader agreement in BI-RADS category and density assessment between C-View + DBT and FFDM + DBT, with high sensitivity, specificity, PPV and NPV of C-View + DBT when compared with FFDM + DBT. There was comparable PPV between C-View + DBT and FFDM + DBT, with histopathology as gold standard. High level of interreader agreement in BI-RADS category and density assessment for FFDM + DBT and C-View + DBT. There was good agreement between FFDM + DBT and C-View + DBT in mass characterization, and almost perfect agreement in calcification and asymmetric density. 52.2% lower radiation dose incurred when using C-View + DBT. Hence, synthesized 2D images are comparable to FFDM with reduction in radiation dose within the limits of Malaysian multi-ethnic population.
  8. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Ng KH
    Ultrasound Med Biol, 2019 06;45(6):1417-1426.
    PMID: 30962016 DOI: 10.1016/j.ultrasmedbio.2019.01.024
    The purpose of this study was to assess the potential of shear wave elastography (SWE) as an indicator of abnormal kidney function defined by radiolabeled glomerular filtration rate (GFR). Fifty-seven patients referred for 51Cr-ethylenediaminetetraacetic acid GFR and 99mTc-dimercaptosuccinic acid renal scintigraphy were included. Young's modulus (YM) measured with SWE and kidney length, volume, cortical thickness and parenchymal echogenicity measured with conventional ultrasound were correlated with patients' GFR and renal scintigraphy results. Spearman correlation coefficients between SWE and GFR were negative for the right (r = -0.635, p < 0.0001) and left (r = -0.817, p < 0.0001) kidneys. Positive correlations between left renal cortical thickness (r = 0.381, p = 0.04) and left kidney volume (r = 0.356, p = 0.019) with GFR were reported. SWE correctly predicted the dominant functioning kidney in 94.7% of cases. The area under the receiver operating characteristic curve for SWE (0.800) was superior to that for conventional ultrasound (0.252-0.415). The cutoff value of ≥5.52 kPa suggested a kidney function ≤60 mL/min/1.73 m2 (82.4% sensitivity and 76.2% specificity). SWE has advantages over conventional ultrasound in assessing kidney function and distinguishing the dominant functioning kidney.
  9. Al-Shabi M, Lan BL, Chan WY, Ng KH, Tan M
    Int J Comput Assist Radiol Surg, 2019 Oct;14(10):1815-1819.
    PMID: 31020576 DOI: 10.1007/s11548-019-01981-7
    PURPOSE: Lung nodules have very diverse shapes and sizes, which makes classifying them as benign/malignant a challenging problem. In this paper, we propose a novel method to predict the malignancy of nodules that have the capability to analyze the shape and size of a nodule using a global feature extractor, as well as the density and structure of the nodule using a local feature extractor.

    METHODS: We propose to use Residual Blocks with a 3 × 3 kernel size for local feature extraction and Non-Local Blocks to extract the global features. The Non-Local Block has the ability to extract global features without using a huge number of parameters. The key idea behind the Non-Local Block is to apply matrix multiplications between features on the same feature maps.

    RESULTS: We trained and validated the proposed method on the LIDC-IDRI dataset which contains 1018 computed tomography scans. We followed a rigorous procedure for experimental setup, namely tenfold cross-validation, and ignored the nodules that had been annotated by

  10. Gill MK, Vijayananthan A, Kumar G, Jayarani K, Ng KH, Sun Z
    Quant Imaging Med Surg, 2015 Aug;5(4):524-33.
    PMID: 26435916 DOI: 10.3978/j.issn.2223-4292.2015.04.04
    To determine the effective radiation dose and image quality resulting from 100 versus 120 kilovoltage (kV) protocols among patients referred for computed tomography pulmonary angiography (CTPA).
  11. Nazri M, Bux SI, Tengku-Kamalden TF, Ng KH, Sun Z
    Quant Imaging Med Surg, 2013 Apr;3(2):82-8.
    PMID: 23630655 DOI: 10.3978/j.issn.2223-4292.2013.03.06
    To investigate the prevalence of incidental sinus abnormalities on CT and MRI imaging of the head, and identify if there is any correlation between patient symptomatology and image findings.
  12. Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS
    Ultrasound Med Biol, 2021 08;47(8):2033-2047.
    PMID: 33958257 DOI: 10.1016/j.ultrasmedbio.2021.03.030
    Early detection of chronic kidney disease is important to prevent progression of irreversible kidney damage, reducing the need for renal transplantation. Shear wave elastography is ideal as a quantitative imaging modality to detect chronic kidney disease because of its non-invasive nature, low cost and portability, making it highly accessible. However, the complexity of the kidney architecture and its tissue properties give rise to various confounding factors that affect the reliability of shear wave elastography in detecting chronic kidney disease, thus limiting its application to clinical trials. The objective of this review is to highlight the confounding factors presented by the complex properties of the kidney, in addition to outlining potential mitigation strategies, along with the prospect of increasing the versatility and reliability of shear wave elastography in detecting chronic kidney disease.
  13. Tan M, Al-Shabi M, Chan WY, Thomas L, Rahmat K, Ng KH
    Med Biol Eng Comput, 2021 Feb;59(2):355-367.
    PMID: 33447988 DOI: 10.1007/s11517-021-02313-1
    This study objectively evaluates the similarity between standard full-field digital mammograms and two-dimensional synthesized digital mammograms (2DSM) in a cohort of women undergoing mammography. Under an institutional review board-approved data collection protocol, we retrospectively analyzed 407 women with digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) examinations performed from September 1, 2014, through February 29, 2016. Both FFDM and 2DSM images were used for the analysis, and 3216 available craniocaudal (CC) and mediolateral oblique (MLO) view mammograms altogether were included in the dataset. We analyzed the mammograms using a fully automated algorithm that computes 152 structural similarity, texture, and mammographic density-based features. We trained and developed two different global mammographic image feature analysis-based breast cancer detection schemes for 2DSM and FFDM images, respectively. The highest structural similarity features were obtained on the coarse Weber Local Descriptor differential excitation texture feature component computed on the CC view images (0.8770) and MLO view images (0.8889). Although the coarse structures are similar, the global mammographic image feature-based cancer detection scheme trained on 2DSM images outperformed the corresponding scheme trained on FFDM images, with area under a receiver operating characteristic curve (AUC) = 0.878 ± 0.034 and 0.756 ± 0.052, respectively. Consequently, further investigation is required to examine whether DBT can replace FFDM as a standalone technique, especially for the development of automated objective-based methods.
  14. Leong SS, Vijayananthan A, Yaakup NA, Shah N, Ng KH, Acharya UR, et al.
    Comput Biol Med, 2016 11 01;78:58-64.
    PMID: 27658262 DOI: 10.1016/j.compbiomed.2016.09.006
    OBJECTIVE: To determine the reproducibility of three-dimensional (3D) ultrasound (US) over two-dimensional (2D) US in characterizing atherosclerotic carotid plaques using inter- and intra-observer agreement metrics.

    METHODS: A Total of 51 patients with 105 carotid artery plaques were screened using 3D and 2D US probes attached to the same US scanner. Two independent observers characterized the plaques based on the morphological features namely echotexture, echogenicity and surface characteristics. The scores assigned to each morphological feature were used to determine intra- and inter-observer performance. The level of agreement was measured using Kappa coefficient.

    RESULTS: The first observer with 2D US showed fair (k=0.4-0.59) and very strong (k>0.8) with 3D US intra-observer agreements using three morphological features. The second observer indicated moderate strong (k=0.6-0.79) with 2D US and very strong with 3D US (k>0.8) intra-observer performances. Moderate strong (k=0.6-0.79) and very strong (k>0.8) inter-observer agreements were reported with 2D US and 3D US respectively. The results with 2D and 3D US were correlated 62% using only echotexture and 56% using surface morphology coupled with echogenicity. 3D US gave a lower score than 2D 71% of the time (p=0.005) in disagreement cases.

    CONCLUSION: High reproducibility in carotid plaque characterization was obtained using 3D US rather than 2D US. Hence, it can be a preferred imaging modality in routine or follow up plaque screening of patients with carotid artery disease.

  15. Ng KH, Khan MR, Ng YH, Hossain SS, Cheng CK
    J Environ Manage, 2017 Jul 01;196:674-680.
    PMID: 28365553 DOI: 10.1016/j.jenvman.2017.03.078
    In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m2/g) compared to the spherical TiO2 photocatalysts (11.34 m2/g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation.
  16. Faust O, Acharya UR, Sudarshan VK, Tan RS, Yeong CH, Molinari F, et al.
    Phys Med, 2017 Jan;33:1-15.
    PMID: 28010920 DOI: 10.1016/j.ejmp.2016.12.005
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems.
  17. Safari MJ, Wong JHD, Jong WL, Thorpe N, Cutajar D, Rosenfeld A, et al.
    Phys Med, 2017 Mar;35:66-72.
    PMID: 28256398 DOI: 10.1016/j.ejmp.2017.02.002
    PURPOSE: The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures.

    METHODS: We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors.

    RESULTS: DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region.

    CONCLUSION: Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures.

  18. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Ng KH
    Br J Radiol, 2018 Sep;91(1089):20180235.
    PMID: 29869920 DOI: 10.1259/bjr.20180235
    OBJECTIVE: To investigate the use of shear wave elastography (SWE)-derived estimates of Young's modulus (YM) as an indicator to detect abnormal renal tissue diagnosed by estimated glomerular filtration rate (eGFR).

    METHODS: The study comprised 106 chronic kidney disease (CKD) patients and 203 control subjects. Conventional ultrasound was performed to measure the kidney length and cortical thickness. SWE imaging was performed to measure renal parenchymal stiffness. Diagnostic performance of SWE and conventional ultrasound were correlated with serum creatinine, urea levels and eGFR.

    RESULTS: Pearson's correlation coefficient revealed a negative correlation between YM measurements and eGFR (r = -0.576, p < 0.0001). Positive correlations between YM measurements and age (r = 0.321, p < 0.05), serum creatinine (r = 0.375, p < 0.0001) and urea (r = 0.287, p < 0.0001) were also observed. The area under the receiver operating characteristic curve for SWE (0.87) was superior to conventional ultrasound alone (0.35-0.37). The cut-off value of less or equal to 4.31 kPa suggested a non-diseased kidney (80.3% sensitivity, 79.5% specificity).

    CONCLUSION: SWE was superior to renal length and cortical thickness in detecting CKD. A value of 4.31 kPa or less showed good accuracy in determining whether a kidney was diseased or not. Advances in knowledge: On SWE, CKD patients show greater renal parenchymal stiffness than non-CKD patients. Determining a cut-off value between normal and diseased renal parenchyma may help in early non-invasive detection and management of CKD.

  19. Round WH, Ng KH, Rodriguez L, Thayalan K, Tang F, Srivastava R, et al.
    Australas Phys Eng Sci Med, 2018 Dec;41(4):809-810.
    PMID: 30406922 DOI: 10.1007/s13246-018-0708-x
    This policy statement, which is the sixth of a series of documents prepared by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP) Professional Development Committee, gives guidance on how medical physicists in AFOMP countries should conduct themselves in an ethical manner in their professional practice (Ng et al. in Australas Phys Eng Sci Med 32:175-179, 2009; Round et al. in Australas Phys Eng Sci Med 33:7-10, 2010; Round et al. in Australas Phys Eng Sci Med 34:303-307, 2011; Round et al. in Australas Phys Eng Sci Med 35:393-398, 2012; Round et al. in Australas Phys Eng Sci Med 38:217-221, 2015). It was developed after the ethics policies and codes of conducts of several medical physics societies and other professional organisations were studied. The policy was adopted at the Annual General Meeting of AFOMP held in Jaipur, India, in November 2017.
  20. Wong JHD, Bakhsh M, Cheah YY, Jong WL, Khor JS, Ng KH
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):451-460.
    PMID: 31650160 DOI: 10.1093/rpd/ncz186
    This study characterises and evaluates an Al2O3:C-based optically stimulated luminescent dosemeter (OSLD) system, commercially known as the nanoDot™ dosemeter and the InLight® microStar reader, for personal and in vivo dose measurements in diagnostic radiology. The system characteristics, such as dose linearity, reader accuracy, reproducibility, batch homogeneity, energy dependence and signal stability, were explored. The suitability of the nanoDot™ dosemeters was evaluated by measuring the depth dose curve, in vivo dose measurement and image perturbation. The nanoDot™ dosemeters were observed to produce a linear dose with ±2.8% coefficient variation. Significant batch inhomogeneity (8.3%) was observed. A slight energy dependence (±6.1%) was observed between 60 and 140 kVp. The InLight® microStar reader demonstrated good accuracy and a reproducibility of ±2%. The depth dose curve measured using nanoDot™ dosemeters showed slightly lower responses than Monte Carlo simulation results. The total uncertainty for a single dose measurement using this system was 11%, but it could be reduced to 9.2% when energy dependence correction was applied.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links