Displaying publications 201 - 220 of 330 in total

Abstract:
Sort:
  1. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
    Matched MeSH terms: Antibodies, Viral/blood*
  2. Mills JN, Alim AN, Bunning ML, Lee OB, Wagoner KD, Amman BR, et al.
    Emerg Infect Dis, 2009 Jun;15(6):950-2.
    PMID: 19523300 DOI: 10.3201/eid1506.080453
    The 1999 outbreak of Nipah virus encephalitis in humans and pigs in Peninsular Malaysia ended with the evacuation of humans and culling of pigs in the epidemic area. Serologic screening showed that, in the absence of infected pigs, dogs were not a secondary reservoir for Nipah virus.
    Matched MeSH terms: Antibodies, Viral/blood*
  3. Hickey AC, Koster JA, Thalmann CM, Hardcastle K, Tio PH, Cardosa MJ, et al.
    Am J Trop Med Hyg, 2013 Dec;89(6):1043-57.
    PMID: 24062475 DOI: 10.4269/ajtmh.13-0145
    Dengue virus (DENV) is considered to be the most important arthropod-borne viral disease and causes more than 100 million human infections annually. To further characterize primary DENV infection in vivo, rhesus macaques were infected with DENV-1, DENV-2, DENV-3, or DENV-4 and clinical parameters, as well as specificity and longevity of serologic responses, were assessed. Overt clinical symptoms were not present after infection. However, abnormalities in blood biochemical parameters consistent with heart, kidney, and liver damage were observed, and changes in plasma fibrinogen, D-dimers, and protein C indicated systemic activation of the blood coagulation pathway. Significant homotypic and heterotypic serum immunoglobulins were present in all animals, and IgG persisted for at least 390 days. Serum neutralizing antibody responses were highly serotype specific by day 120. However, some heterotypic neutralizing activity was noted in infected animals. Identification of serotype-specific host responses may help elucidate mechanisms that mediate severe DENV disease after reinfection.
    Matched MeSH terms: Antibodies, Viral/biosynthesis; Antibodies, Viral/blood*
  4. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Antibodies, Viral/blood; Antibodies, Viral/immunology
  5. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Antibodies, Viral/blood; Antibodies, Viral/immunology
  6. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Antibodies, Viral/blood; Antibodies, Viral/immunology
  7. Zulkifli I, Abdulllah N, Azrin NM, Ho YW
    Br Poult Sci, 2000 Dec;41(5):593-7.
    PMID: 11201439
    1. Hubbard x Hubbard (HH) and Shaver x Shaver (SS) chicks given a dietary supplement of either 50 mg/kg oxytetracycline (OTC) or 1 g/kg Lactobacillus culture (LC) were exposed to 36 +/- 1 degrees C for 3 h daily from day (d) 21 to 42. 2. Prior to heat treatment, body weight (d 21) and weight gain (d 1 to d 21) of OTC and LC birds were greater than those fed the control diet. Chicks given LC had the best food efficiency followed by OTC and control birds during d 1 to d 21. Body weight (d 1 and d 21) and weight gain (d 1 to d 21) were greater for HH tlhan SS chicks. 3. After 3 weeks of heat exposure, birds receiving the LC diet had greater body weight and weight gain, higher food intake and lower food efficiency than OTC and control chicks. 4. Antibody production against Newcastle discase vaccine on d 21 was not affected by strain or diet. On d 42, while diet had negligible effect on this variable among the SS broilers, HH birds fed LC had higher antibody production than those on the control diet. 5. Neither strain nor diet had a significant effect on mortality.
    Matched MeSH terms: Antibodies, Viral/biosynthesis; Antibodies, Viral/blood
  8. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Antibodies, Viral/blood; Antibodies, Viral/immunology
  9. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Antibodies, Viral/blood*; Antibodies, Viral/immunology
  10. Lim CS, Krishnan G, Sam CK, Ng CC
    Clin Chim Acta, 2013 Jan 16;415:158-61.
    PMID: 23043757 DOI: 10.1016/j.cca.2012.08.031
    Because blocking agent occupies most binding surface of a solid phase, its ability to prevent nonspecific binding determines the signal-to-noise ratio (SNR) and reliability of an enzyme-linked immunosorbent assay (ELISA).
    Matched MeSH terms: Antibodies, Viral/immunology; Antibodies, Viral/chemistry
  11. Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, et al.
    PLoS Negl Trop Dis, 2014 Nov;8(11):e3302.
    PMID: 25412358 DOI: 10.1371/journal.pntd.0003302
    BACKGROUND: Nipah virus (NiV) is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia. In Bangladesh, NiV has caused recognized human outbreaks since 2001 and three outbreak investigations identified an epidemiological association between close contact with sick or dead animals and human illness.

    METHODOLOGY: We examined cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas. We also tested pig sera collected under another study focused on Japanese encephalitis.

    PRINCIPAL FINDINGS: We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay; however, these antibodies did not neutralize NiV. Cattle and goats with NiVsG antibodies were more likely to have a history of feeding on fruits partially eaten by bats or birds (PR=3.1, 95% CI 1.6-5.7) and drinking palmyra palm juice (PR=3.9, 95% CI 1.5-10.2).

    CONCLUSIONS: This difference in test results may be due to the exposure of animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance.

    Matched MeSH terms: Antibodies, Viral/blood
  12. Marlina S, Radzi SF, Lani R, Sieng KC, Rahim NF, Hassan H, et al.
    Parasit Vectors, 2014;7:597.
    PMID: 25515627 DOI: 10.1186/s13071-014-0597-0
    West Nile virus (WNV) infection is an emerging zoonotic disease caused by an RNA virus of the genus Flavivirus. WNV is preserved in the environment through cyclic transmission, with mosquitoes, particularly Culex species, serving as a vector, birds as an amplifying host and humans and other mammals as dead-end hosts. To date, no studies have been carried out to determine the prevalence of the WNV antibody in Malaysia. The aim of this study was to screen for the seroprevalence of the WNV in Malaysia's Orang Asli population.
    Matched MeSH terms: Antibodies, Viral/blood*
  13. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Antibodies, Viral/blood*
  14. DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H
    Vaccine, 2014 May 07;32(22):2637-44.
    PMID: 24631094 DOI: 10.1016/j.vaccine.2014.02.087
    BACKGROUND: Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks.

    METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies.

    RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection.

    CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.

    Matched MeSH terms: Antibodies, Viral/blood
  15. Sam IC, Shaw R, Chan YF, Hooi PS, Hurt AC, Barr IG
    J Med Virol, 2013 Aug;85(8):1420-5.
    PMID: 23765779 DOI: 10.1002/jmv.23622
    Relatively little is known about the burden of influenza in tropical countries. The seroprevalence of pandemic influenza A (H1N1) 2009, seasonal H1N1 and H3N2 was determined in Kuala Lumpur, Malaysia. Pre- and post-pandemic residual laboratory sera were tested by hemagglutination-inhibition. The seroprevalence of A(H1N1)pdm09 increased from 3.7% pre-pandemic to 21.9% post-pandemic, giving an overall cumulative incidence of 18.1% (95% CI, 13.8-22.5%), mainly due to increases in those <5, 5-17, and 18-29 years old. In contrast with findings from USA, Europe, and Australia, pre-existing seroprevalence to A(H1N1)pdm09 was low at 5.6% in the elderly age group of >55 years. A(H1N1)pdm09 affected almost a third of those <30 years in Kuala Lumpur. Pre-pandemic seroprevalence was 14.7% for seasonal H1N1 and 21.0% for H3N2, and these rates did not change significantly after the pandemic. Seasonal and pandemic influenza cause a considerable burden in tropical Malaysia, particularly in children and young adults.
    Matched MeSH terms: Antibodies, Viral/blood
  16. Lim KL, Jazayeri SD, Yeap SK, Alitheen NB, Bejo MH, Ideris A, et al.
    BMC Vet Res, 2012;8:132.
    PMID: 22866758 DOI: 10.1186/1746-6148-8-132
    DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine.
    Matched MeSH terms: Antibodies, Viral/blood
  17. Kassim FM, Izati MN, TgRogayah TA, Apandi YM, Saat Z
    PMID: 21706934
    Accurate and timely diagnosis of dengue virus is important for early detection of dengue virus infection. In this study, the usefulness of the dengue NS1 antigen test was evaluated as a routine, rapid diagnostic test for dengue virus infection. A total of 208 sera from patients suspected of having dengue virus infection were collected and tested for dengue antibody, dengue genome and dengue NS1 antigen. Dengue antibody test, dengue PCR test and dengue antigen test were able to detect dengue virus infection from Days 1 to 8 in 72.8, 52.8 and 44.0% of samples, respectively. Of the 208 sera tested, 69.2% (144/208) of the acute sera were positive for dengue virus infection based on IgM antibody, IgG antibody, NS1 antigen and PCR tests. Thirty-two point two percent of the samples (67/208) were found positive for dengue NS1 antigen, 38.5% (80/208) were PCR positive, 40.9% (85/208) were IgM positive and 36.1% (75/208) were IgG positive for dengue virus. The results reveal the detection rate of dengue virus infection was similar for PCR and dengue antibody (65.9%) and for NS1 antigen and dengue antibody (62.0%) combinations. Therefore, the dengue NS1 antigen test can be used to complement the current antibody test used in peripheral laboratories. Thus, the combination of the NS1 antigen and antibody tests could increase the diagnostic efficiency for early diagnosis of dengue infection.
    Matched MeSH terms: Antibodies, Viral/blood
  18. Franco L, Palacios G, Martinez JA, Vázquez A, Savji N, De Ory F, et al.
    PLoS Negl Trop Dis, 2011 Aug;5(8):e1251.
    PMID: 21829739 DOI: 10.1371/journal.pntd.0001251
    Dengue virus (DENV) circulates in human and sylvatic cycles. Sylvatic strains are both ecologically and evolutionarily distinct from endemic viruses. Although sylvatic dengue cycles occur in West African countries and Malaysia, only a few cases of mild human disease caused by sylvatic strains and one single case of dengue hemorrhagic fever in Malaysia have been reported. Here we report a case of dengue hemorrhagic fever (DHF) with thrombocytopenia (13000/µl), a raised hematocrit (32% above baseline) and mucosal bleeding in a 27-year-old male returning to Spain in November 2009 after visiting his home country Guinea Bissau. Sylvatic DENV-2 West African lineage was isolated from blood and sera. This is the first case of DHF associated with sylvatic DENV-2 in Africa and the second case worldwide of DHF caused by a sylvatic strain.
    Matched MeSH terms: Antibodies, Viral/blood
  19. Houshmand M, Azhar K, Zulkifli I, Bejo MH, Kamyab A
    Poult Sci, 2012 Feb;91(2):393-401.
    PMID: 22252353 DOI: 10.3382/ps.2010-01050
    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.
    Matched MeSH terms: Antibodies, Viral/blood
  20. Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al.
    PLoS Negl Trop Dis, 2011 Jun;5(6):e1199.
    PMID: 21713023 DOI: 10.1371/journal.pntd.0001199
    BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum.
    AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test.
    METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples.
    KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers.
    CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.
    Matched MeSH terms: Antibodies, Viral/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links