Displaying publications 201 - 220 of 283 in total

Abstract:
Sort:
  1. Lye MS, Tor YS, Tey YY, Shahabudin A, Loh SP, Ibrahim N, et al.
    J Mol Neurosci, 2021 May;71(5):981-990.
    PMID: 33034825 DOI: 10.1007/s12031-020-01719-0
    Heritability of major depressive disorder (MDD) is between 36 and 44%, suggesting that up to nearly half of the phenotypic variability is attributable to genes. A number of genetic polymorphisms have been shown to predispose certain individuals to depression. Of particular interest are the polymorphisms of the vitamin D receptor (VDR) gene. Although the VDR gene has been well characterized and a vast number of polymorphisms have been identified, the association between BsmI (rs1544410), ApaI (rs7975232) and TaqI (rs731236) single-nucleotide polymorphisms (SNPs), together with their haplotypes, and MDD risk have yet to be established. We conducted a matched case-control study with a total of 600 participants comprising 300 major depressive disorder (MDD) cases and 300 controls matched by age, gender and ethnicity in a 1:1 ratio, in four public hospitals in Kuala Lumpur and Selangor. Three adjacent SNPs of the VDR gene-BsmI (rs1544410), ApaI (rs7975232) and TaqI (rs731236)-were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratios and 95% confidence intervals (CIs) were obtained from conditional logistic regression using Stata 16. Linkage disequilibrium and haplotype association with MDD were analyzed using the online SNPStats program. None of the genotypes of the three SNPs was significantly associated with risk of developing MDD after adjusting for confounding factors. However, the TAC (BAt) haplotype was associated with increased odds of MDD (adjusted OR = 2.17, 95% CI = 1.30-3.61, p = 0.003) using CCT (baT) as reference haplotype. The findings suggest that the BsmI-ApaI-TaqI TAC (BAt) haplotype of the VDR gene increases susceptibility to MDD.
    Matched MeSH terms: Haplotypes
  2. Ismail NA, Adilah-Amrannudin N, Hamsidi M, Ismail R, Dom NC, Ahmad AH, et al.
    J Med Entomol, 2017 11 07;54(6):1573-1581.
    PMID: 28981849 DOI: 10.1093/jme/tjx126
    The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally.
    Matched MeSH terms: Haplotypes
  3. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

    Matched MeSH terms: Haplotypes
  4. Ahmed MA, Fauzi M, Han ET
    Malar J, 2018 Mar 14;17(1):115.
    PMID: 29540177 DOI: 10.1186/s12936-018-2256-y
    BACKGROUND: Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia.

    METHODS: A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software.

    RESULTS: Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.

    Matched MeSH terms: Haplotypes
  5. Li T, Pappas C, Le ST, Wang Q, Klinedinst BS, Larsen BA, et al.
    Neurobiol Aging, 2022 Jan;109:158-165.
    PMID: 34740077 DOI: 10.1016/j.neurobiolaging.2021.09.020
    The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.
    Matched MeSH terms: Haplotypes
  6. George-Kodiseri E, Yang KG, Kutlar F, Wilson JB, Kutlar A, Stoming TA, et al.
    Singapore Med J, 1990 Aug;31(4):374-7.
    PMID: 2255937
    The overseas Chinese in West Malaysia are almost exclusively from the south-eastern provinces of China-Kwangtung, Fukien, and Kwangsi. To institute a comprehensive thalassaemia control programme for this region we have characterised the beta thalassaemia mutations in 16 Chinese patients from West Malaysia: 4 beta thalassaemia mutations were seen: a) an A----G substitution in the TATA box [-28 base pairs (bp)], an A----T substitution in codon 17 [17 A----T], c) a 4 base pairs - TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)], and d) a C----T substitution at the second intervening sequence (IVS 11) position 654. Similar mutations have been described in patients from the south-eastern provinces of China. The delineation of the specific mutations present will enable effective prenatal diagnosis for beta thalassaemia of ethnic Chinese in West Malaysia to be instituted.
    Matched MeSH terms: Haplotypes
  7. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, A Rashid MR, et al.
    Leg Med (Tokyo), 2024 May;68:102416.
    PMID: 38325234 DOI: 10.1016/j.legalmed.2024.102416
    X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.
    Matched MeSH terms: Haplotypes
  8. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
    Matched MeSH terms: Haplotypes
  9. Yatim NF, Rahim MA, Menon K, Al-Hassan FM, Ahmad R, Manocha AB, et al.
    Int J Mol Sci, 2014 May 19;15(5):8835-45.
    PMID: 24857915 DOI: 10.3390/ijms15058835
    Both α- and β-thalassaemia syndromes are public health problems in the multi-ethnic population of Malaysia. To molecularly characterise the α- and β-thalassaemia deletions and mutations among Malays from Penang, Gap-PCR and multiplexed amplification refractory mutation systems were used to study 13 α-thalassaemia determinants and 20 β-thalassaemia mutations in 28 and 40 unrelated Malays, respectively. Four α-thalassaemia deletions and mutations were demonstrated. --SEA deletion and αCSα accounted for more than 70% of the α-thalassaemia alleles. Out of the 20 β-thalassaemia alleles studied, nine different β-thalassaemia mutations were identified of which βE accounted for more than 40%. We concluded that the highest prevalence of (α- and β-thalassaemia alleles in the Malays from Penang are --SEA deletion and βE mutation, respectively.
    Matched MeSH terms: Haplotypes
  10. Hafizi R, Salleh B, Latiffah Z
    Braz J Microbiol, 2013;44(3):959-68.
    PMID: 24516465
    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
    Matched MeSH terms: Haplotypes
  11. Marquez JG, Bangs MJ, Krafsur ES
    Med Vet Entomol, 2003 Dec;17(4):429-35.
    PMID: 14651658
    Houseflies (Musca domestica L., Diptera: Muscidae) are cosmopolitan, colonizing, and eusynanthropic. Their distribution in the Malaysian archipelago provides an opportunity to study successive waves of colonization and extinction during the Pleistocene and Recent epochs. We scored single-strand conformation polymorphisms (SSCPs) at 16S2 and COII mitochondrial loci in 47 housefly samples from the Australian, Austro-Malayan, Indo-Malayan, Manchurian and Indo-Chinese subregions of Wallace's zoogeographical classification. We discuss the results in light of the Pleistocene vs. post-Pleistocene dispersal and faunal exchange in the Asia-Pacific area. Fourteen haplotypes were detected, of which 10 were confined to a single subregion. No haplotype was ubiquitous and only one was found in four subregions. Population diversity, HS, was greatest in the Indo-Malayan (0.36) and heterogeneous among subregions. The mean subregional diversity was 0.21 +/- 0.03, representing the probability that two randomly chosen flies, from any subregion, had different haplotypes. The hierarchical partition of diversity indicated restricted maternal gene flow among subregions (GRT = 0.60, Nm approximately 0.32). These results suggest long-standing genetic isolation of houseflies in the Malaysian archipelago and support the hypothesis that they dispersed widely during the Pleistocene. Haplotypes common among mainland populations but shared with island groups in low frequencies (<1%) indicate surprisingly little recent gene flow.
    Matched MeSH terms: Haplotypes
  12. Salahshourifar I, Halim AS, Sulaiman WA, Zilfalil BA
    J Dent Res, 2011 Mar;90(3):387-91.
    PMID: 21297019 DOI: 10.1177/0022034510391798
    Non-syndromic cleft lip, with or without cleft palate, is a heterogeneous, complex disease with a high incidence in the Asian population. Several association studies have been done on cleft candidate genes, but no reports have been published thus far on the Orofacial Cleft 1 (OFC1) genomic region in an Asian population. This study investigated the association between the OFC1 genomic region and non-syndromic cleft lip with or without cleft palate in 90 Malay father-mother-offspring trios. Results showed a preferential over-transmission of a 101-bp allele of marker D6S470 in the allele- and haplotype-based transmission disequilibrium test (TDT), as well as an excess of maternal transmission. However, no significant p-value was found for a maternal genotype effect in a log-linear model, although single and double doses of the 101-bp allele showed a slightly increased cleft risk (RR = 1.37, 95% CI, 0.527-3.4, p-value = 0.516). Carrying two copies of the 101-bp allele was significantly associated with an increased cleft risk (RR = 2.53, 95% CI, 1.06-6.12, p-value = 0.035). In conclusion, we report evidence of the contribution of the OFC1 genomic region to the etiology of clefts in a Malay population.
    Matched MeSH terms: Haplotypes
  13. Jinam TA, Phipps ME, Saitou N, Hugo Pan-Asian SNP Consortium
    Hum Biol, 2013 Feb-Jun;85(1-3):173-88.
    PMID: 24297225
    Southeast Asia houses various culturally and linguistically diverse ethnic groups. In Malaysia, where the Malay, Chinese, and Indian ethnic groups form the majority, there exist minority groups such as the "negritos" who are believed to be descendants of the earliest settlers of Southeast Asia. Here we report patterns of genetic substructure and admixture in two Malaysian negrito populations (Jehai and Kensiu), using ~50,000 genome-wide single-nucleotide polymorphism (SNP) data. We found traces of recent admixture in both the negrito populations, particularly in the Jehai, with the Malay through principal component analysis and STRUCTURE analysis software, which suggested that the admixture was as recent as one generation ago. We also identified significantly differentiated nonsynonymous SNPs and haplotype blocks related to intracellular transport, metabolic processes, and detection of stimulus. These results highlight the different levels of admixture experienced by the two Malaysian negritos. Delineating admixture and differentiated genomic regions should be of importance in designing and interpretation of molecular anthropology and disease association studies.
    Matched MeSH terms: Haplotypes
  14. Gajra B, Candlish JK, Heng CK, Mak JW, Saha N
    Hum Biol, 1997 Oct;69(5):629-40.
    PMID: 9299883
    Associations among seven apolipoprotein B (APOB) gene polymorphisms [C-T promoter site; Leu-Ala-Leu signal peptide (SP) insertion/deletion; AG C,G site at codon 71; AG A1,D site at codon 591; XbaI site at codon 2488; AG H,I site at codon 3611; and AG T,Z site at codon 4154] were investigated in 195 members of an Orang Asli (aborigine) population from western Malaysia. Frequencies of the rare alleles for all these polymorphisms turned out to be low when compared with European but not Asian populations. The AG H,I site was not polymorphic. The highly polymorphic sites are in linkage disequilibrium among themselves, as shown by their delta values: SP 24,27 and AG C,G, 0.68; SP 24,27 and AG A1,D, 0.71; XbaI and AG C,G, 0.64; XbaI and AG A1,D, 0.57; SP 24,27 and XbaI, 0.48; and AG C,G and AG A1,D, 0.68. Ten unequivocal haplotypes on the basis of six sites (excluding the promoter polymorphism) were observed, and they represent 80% of the sample. The frequency of haplotype SP27,G,A1,X-,I,T, defined by the common homozygotes at all the sites for the APOB gene was 0.7, compared with 0.22 in Europeans. The ancestral haplotype SP27,G,D,X-,I,T was present at low frequency (0.01) in both the Orang Asli and Europeans. A cladogram constructed on the basis of haplotypes in the Orang Asli shows two different lines of evolution and that other haplotypes evolved by subsequent mutations on the ancestral haplotype.
    Matched MeSH terms: Haplotypes
  15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Haplotypes
  16. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: Haplotypes*
  17. Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):903-911.
    PMID: 27640304 DOI: 10.1016/j.ajhg.2016.07.017
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
    Matched MeSH terms: Haplotypes/genetics
  18. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: Haplotypes/genetics
  19. Low VL, Adler PH, Takaoka H, Ya'cob Z, Lim PE, Tan TK, et al.
    PLoS One, 2014;9(6):e100512.
    PMID: 24941043 DOI: 10.1371/journal.pone.0100512
    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
    Matched MeSH terms: Haplotypes
  20. Al-Hamidhi S, Mahdy MA, Idris MA, Bin Dajem SM, Al-Sheikh AA, Al-Qahtani A, et al.
    Infect Genet Evol, 2014 Oct;27:25-31.
    PMID: 24981966 DOI: 10.1016/j.meegid.2014.06.015
    In the Arabian Peninsula malaria control is progressing steadily, backed by adequate logistic and political support. As a result, transmission has been interrupted throughout the region, with exception of limited sites in Yemen and Saudi Arabia. Here we examined Plasmodium falciparum parasites in these sites to assess if the above success has limited diversity and gene flow.
    Matched MeSH terms: Haplotypes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links