METHODS AND RESULTS: Symptomatic leaves of S. trifasciata were collected from five states in Malaysia. The causal pathogen was isolated and identified for the first time in Malaysia as C. sansevieriae based on morphological and multi-gene phylogenetic analyses using ITS, TUB2 and GAPDH sequences. Pathogenicity tests were conducted on different hosts. Colletotrichum sansevieriae was not pathogenic towards S. cylindrica, S. masoniana, Furcraea foetida, Chlorophytum comosum, Aloe vera and Gasteria carinata, confirming the exceptionally high host specificity for a species of Colletotrichum. Histopathology was performed using light microscope and scanning electron microscopy to study the infection process of C. sansevieriae on S. trifasciata. Colonization of host leaves by the pathogen was observed 2 days after inoculation.
CONCLUSIONS: Colletotrichum sansevieriae caused anthracnose of S. trifasciata in Malaysia. It is a host-specific pathogen and colonized the host intracellularly.
SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of C. sansevieriae causing anthracnose of S. trifasciata in Malaysia. The host range test and understanding of the infection process will provide better understanding of the host-pathogen relationship and beneficial for effective disease management.
Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.
Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.
Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.
RESULTS: In this study, ten clinical isolates were obtained from corneal scrapings. Rns genotype and intra-genotypic variation at the DF3 region of the isolates were identified. Results revealed that all clinical isolates belonged to the T4 genotype, with T4/6 (4 isolates), T4/2 (3 isolates), T4/16 (2 isolates) and one new genotype T4 sequence (T4/36), being determined. The axenic clinical isolates were cytopathogenic to rabbit corneal fibroblasts. MBP and AhLBP mRNA expression are directly correlated to Acanthamoeba cytopathic effect.
CONCLUSIONS: All ten Malaysian clinical isolates were identified as genotype T4 which is predominantly associated with AK. Measuring the mRNA expression of Acanthamoeba virulent markers could be useful in the understanding of the pathogenesis of Acanthamoeba keratitis.