Displaying publications 201 - 220 of 897 in total

Abstract:
Sort:
  1. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AK, Radu S, et al.
    N Biotechnol, 2011 Oct;28(6):738-45.
    PMID: 21238617 DOI: 10.1016/j.nbt.2011.01.002
    Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
    Matched MeSH terms: Bacterial Proteins/biosynthesis; Lipase/biosynthesis
  2. Chong SL, Mou DG, Ali AM, Lim SH, Tey BT
    Hybridoma (Larchmt), 2008 Apr;27(2):107-11.
    PMID: 18642675
    The effect of mild hypothermic (32 degrees C) conditions on cell growth, cell-cycle progress, and antibody production of hybridoma C2E7 cells was investigated in the present study. The growth of hybridoma cells was slower during the mild hypothermic condition compared to that at 37 degrees C; this led to about 10% decrease in maximum viable cell density and volumetric antibody productivity. However, under mild hypothermic growth conditions, the culture viability was substantially improved and the specific antibody productivity was enhanced compared to that at 37 degrees C. The average specific productivity for the entire batch culture at 32 degrees C is about 5% higher than that at 37 degrees C. Cell-cycle analysis data showed that there was no growth arrestment during the mild hypothermic growth of hybridoma cells. The G1-phase cells were increased, while the S-phase cells were decreased gradually as the culture time progressed. Further analysis showed that the specific antibody productivity of hybridoma cells was correlated to the fraction of S-phase cells.
    Matched MeSH terms: Antibodies, Monoclonal/biosynthesis*; Immunoglobulin M/biosynthesis*
  3. Kumar SK, Zain RB, Ismail SM, Cheong SC
    J Exp Clin Cancer Res, 2005 Dec;24(4):639-46.
    PMID: 16471328
    Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, is strongly associated with telomerase activity implicated in cellular immortalization and tumorigenesis. In situ detection of hTERT will aid in determining the localization of telomerase positive cells. The aim of this study was to detect hTERT protein expression in multistep oral carcinogenesis using paraffin embedded tissue samples, and to study the relationship of hTERT expression with different histological stages in oral carcinogenesis. Normal (n = 4), hyperplastic (n = 4), dysplastic (n = 4) and neoplastic (n = 10) oral epithelia representing different histological stages in oral carcinogenesis were included in the study. hTERT protein detection was done by immunohistochemistry (IHC) technique. Nuclear staining intensities were noted and the hTERT-labelling index was determined. Dysplastic and neoplastic oral epithelia showed an increased percentage of hTERT positive cells (Grade 4: > 50% positive staining nuclei) with intense staining in the basal, parabasal and superficial layers of the epithelia, unlike normal oral mucosa which showed intense staining only in the basal and parabasal cell layers, which are the normal proliferative progenitor compartments. hTERT protein expression was elevated with the corresponding advancement of the histological stages of oral carcinogenesis, from normal to hyperplasia to dysplasia to carcinoma. There seems to be an upregulation of hTERT protein expression during the progression of oral cancer, therefore, this may indicate the feasibility of IHC detection of hTERT protein in oral carcinogenesis as a potential diagnostic or prognostic marker.
    Matched MeSH terms: DNA-Binding Proteins/biosynthesis*; Telomerase/biosynthesis*
  4. Ismail N, Pihie AH, Nallapan M
    Anticancer Res, 2005 May-Jun;25(3B):2221-7.
    PMID: 16158967
    Xanthorrhizol is a sesquiterpenoid compound extracted from Curcuma xanthorrhiza, which is known locally as Temulawak. Traditionally, C. xanthorrhiza was found to have antibacterial, anticancer and anti-inflammatory activity. The rhizome has also been used to treat inflammation in postpartum uterine bleeding. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the cervical cancer cell line HeLa with an EC50 value of 6.16 microg/ml. Xanthorrhizol significantly increased apoptosis in HeLa cells, as evaluated by the Tdt-mediated dUTP nick end-labelling (TUNEL) assay and nuclear morphology by Hoechst 33258 staining. Western blot analysis, which was further confirmed by the immunostaining results, implied an up-regulation of tumor suppressor protein p53 and the pro-apoptotic protein Bax, following the treatment with xanthorrhizol. Xanthorrhizol, however, did not affect the expression of the anti-apoptotic protein, Bcl-2 and the viral oncoprotein, E6. Hence, xanthorrhizol is a promising antiproliferative and anticancer agent which induces p53 and Bax-dependent apoptosis in HeLa cervical cancer cells.
    Matched MeSH terms: Tumor Suppressor Protein p53/biosynthesis*; Proto-Oncogene Proteins c-bcl-2/biosynthesis*
  5. Joseph NM, Ho KL, Tey BT, Tan CS, Shafee N, Tan WS
    Biotechnol Prog, 2016 Jul 08;32(4):1038-45.
    PMID: 27088434 DOI: 10.1002/btpr.2279
    The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.
    Matched MeSH terms: Recombinant Proteins/biosynthesis; Viral Matrix Proteins/biosynthesis
  6. Usup G, Kulis DM, Anderson DM
    Nat. Toxins, 1994;2(5):254-62.
    PMID: 7866660
    Toxin production of a Malaysian isolate of the toxic red tide dinoflagellate Pyrodinium bahamense var. compressum was investigated at various stages of the batch culture growth cycle and under growth conditions affected by temperature, salinity, and light intensity variations. In all the experiments conducted, only 5 toxins were ever detected. Neosaxitoxin (NEO) and gonyautoxin V (GTX5) made up 80 mole percent or more of the cellular toxin content and saxitoxin (STX), GTX6 and decarbamoylsaxitoxin (dcSTX) made up the remainder. No gonyautoxins I-IV or C toxins were ever detected. In nutrient-replete batch cultures, toxin content rapidly peaked during early exponential phase and just as rapidly declined prior to the onset of plateau phase. Temperature had a marked effect on toxin content, which increased 3-fold as the temperature decreased from the optimum of 28 degrees C to 22 degrees C. Toxin content was constant at salinities of 24% or higher, but increased 3-fold at 20%. Toxin content decreased 2-fold and chlorophyll content increased 3-fold when light intensity was reduced from 90 to 15 microE m-2 s-1. This accompanied a 30% decrease in growth rate. Toxin composition (mole % individual toxin cell-1) remained constant throughout the course of the nutrient-replete culture and during growth at various salinities, but varied significantly with temperature and light intensity changes. At 22 degrees C, GTX5 was 25 mole % and NEO was 65 mole %, while at 34 degrees C, GTX5 increased to 55 mole % and NEO decreased proportionally to 40 mole %. When light intensity was reduced from 90 to 15 microE m-2 s-1, NEO decreased from 55 to 38 mole %, while GTX5 increased from 40 to 58 mole %. These data suggest that low light and high temperature both somehow enhance sulfo-transferase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Marine Toxins/biosynthesis; Saxitoxin/biosynthesis
  7. Cheong YM, Jegathesan M, Ansary A, Othman M
    Med J Malaysia, 1990 Mar;45(1):42-8.
    PMID: 2152068
    The prevalence of Enterotoxigenic Escherichia coli (ETEC) in 433 stool samples from diarrhoeal cases of all ages was studied using two commercially available test kits for the detection of heat labile toxin (LT) and the infant mouse assay for the heat stable toxin (ST). 16 samples (3.7%) were positive for ETEC, of which nine were producing ST alone, six LT alone and only one was producing both LT and ST. Although the percentage of isolation rate was low, its occurrence was almost as common as the Shigella spp and Salmonella spp in the same study. Of the two test kits examined, the Phadebact ETEC-LT Test 50 (Pharmacia Diagnostics, Uppsala, Sweden) was found to be more suitable for use in a routine diagnostic laboratory. Ten out of 12 (83%) of the strains tested were resistant to one or more antibiotics.
    Matched MeSH terms: Bacterial Toxins/biosynthesis*; Enterotoxins/biosynthesis*
  8. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T, Heesom KJ, et al.
    J Antimicrob Chemother, 2018 Jan 01;73(1):88-94.
    PMID: 29029194 DOI: 10.1093/jac/dkx345
    Objectives: In Klebsiella pneumoniae, overproduction of RamA results in reduced envelope permeability and reduced antimicrobial susceptibility but clinically relevant resistance is rarely observed. Here we have tested whether RamA overproduction can enhance acquired β-lactam resistance mechanisms in K. pneumoniae and have defined the envelope protein abundance changes upon RamA overproduction during growth in low and high osmolarity media.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. β-Lactam susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and transcript levels were quantified using real-time RT-PCR.

    Results: RamA overproduction enhanced β-lactamase-mediated β-lactam resistance, in some cases dramatically, without altering β-lactamase production. It increased production of efflux pumps and decreased OmpK35 porin production, though micF overexpression showed that OmpK35 reduction has little impact on envelope permeability. A survey of K. pneumoniae bloodstream isolates revealed ramA hyperexpression in 3 of 4 carbapenemase producers, 1 of 21 CTX-M producers and 2 of 19 strains not carrying CTX-M or carbapenemases.

    Conclusions: Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.

    Matched MeSH terms: Bacterial Proteins/biosynthesis*; Porins/biosynthesis*
  9. Kuo IC, Cheong N, Trakultivakorn M, Lee BW, Chua KY
    J Allergy Clin Immunol, 2003 Mar;111(3):603-9.
    PMID: 12642844
    BACKGROUND: Dual sensitization by Blomia tropicalis and Dermatophagoides pteronyssinus mites is common in tropical and subtropical countries. The human IgE cross-reactivity between clinical important group 5 allergens, Blo t 5 and Der p 5, remains controversial.

    OBJECTIVE: This study was undertaken to assess the levels of the IgE cross-reactivity between Blo t 5 and Der p 5 by using sera from a large cohort of asthmatic children in subtropical and tropical countries.

    METHODS: Purified recombinant Blo t 5 and Der p 5 were produced in Pichia pastoris and tested against sera from 195 asthmatic children. The IgE cross-reactivity was examined by direct, inhibitory and competitive human IgE enzyme-linked immunosorbent assay as well as skin prick tests.

    RESULTS: The Blo t 5 IgE responses were 91.8% (134 of 146) and 73.5% (36 of 49) for Taiwanese and Malaysian sera, respectively. The Blo t 5 specific IgE titers were significantly higher than those of Der p 5 (P

    Matched MeSH terms: Allergens/biosynthesis; Antigens, Dermatophagoides/biosynthesis
  10. Ishikawa T, Abe M, Masuda M
    Virus Res, 2015 Jan 2;195:153-61.
    PMID: 25451067 DOI: 10.1016/j.virusres.2014.10.010
    Japanese encephalitis virus (JEV) genotype V was originally isolated in Malaysia in 1952 and has long been restricted to the area. In 2009, sudden emergence of the genotype V in China and Korea was reported, suggesting expansion of its geographical distribution. Although studies on the genotype V are becoming more important, they have been limited partly due to lack of its infectious molecular clone. In this study, a plasmid carrying cDNA corresponding to the entire genome of JEV Muar strain, which belongs to genotype V, in the downstream of T7 promoter was constructed. Electroporation of viral RNA transcribed by T7 RNA polymerase (T7RNAP) in vitro from the plasmid led to production of progeny viruses both in mammalian and mosquito cells. Also, transfection of the infectious clone plasmid into mammalian cells expressing T7RNAP transiently or stably was demonstrated to generate infectious progenies. When the viral structural protein genes were partially deleted from the full-length cDNA, the subgenomic RNA transcribed in vitro from the modified plasmid was shown to replicate itself in mammalian cells as a replicon. The replicon carrying the firefly luciferase gene in place of the deleted structural protein genes was also shown to efficiently replicate itself and express luciferase in mammalian cells. Compared with the replicon derived from JEV genotype III (Nakayama strain), the genotype V-derived replicon appeared to be more tolerant to introduction of a foreign gene. The infectious clone and the replicons constructed in this study may serve as useful tools for characterizing JEV genotype V.
    Matched MeSH terms: Recombinant Proteins/biosynthesis; Luciferases, Firefly/biosynthesis
  11. Tan HT, Chek MF, Lakshmanan M, Foong CP, Hakoshima T, Sudesh K
    Int J Biol Macromol, 2020 Sep 15;159:250-257.
    PMID: 32417540 DOI: 10.1016/j.ijbiomac.2020.05.064
    Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of β-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.
    Matched MeSH terms: 3-Hydroxybutyric Acid/biosynthesis*; Polyhydroxyalkanoates/biosynthesis
  12. Tay ST, Abidin IA, Hassan H, Ng KP
    Med Mycol, 2011 Jul;49(5):556-60.
    PMID: 21254967 DOI: 10.3109/13693786.2010.551424
    This study was conducted to determine the proteinase, phospholipase, and biofilm forming abilities of Candida isolates in blood cultures of specimens from patients at the University Malaya Medical Center, Kuala Lumpur, Malaysia. Proteinase and phospholipase activities were detected in 93.7% and 73.3%, respectively, of 15 Candida albicans isolates. Amongst the 26 non-C. albicans Candida isolates, proteinase and phospholipase activities were detected in 88.5% and 7.7% of the isolates, respectively. There was no significant difference in the expression levels of proteinase amongst the Candida isolates studied (P = 0.272), but the phospholipase activity of C. albicans was significantly higher than that of the non-C. albicans Candida isolates (P = 0.003). There was no significant difference in the biofilm forming abilities of C. albicans and non-C. albicans Candida isolates on the polystyrene microtiter wells (P = 0.379). In addition, the findings of this study demonstrate increased resistance of Candida isolates in biofilms to amphotericin and fluconazole, as compared to their planktonic counterparts.
    Matched MeSH terms: Peptide Hydrolases/biosynthesis*; Phospholipases/biosynthesis*
  13. Ooi A, Tan S, Mohamed R, Rahman NA, Othman RY
    J Biotechnol, 2006 Feb 24;121(4):471-81.
    PMID: 16271415
    A cucumber green mosaic mottle virus (CGMMV) full-length clone was developed for the expression of Hepatitis B surface antigen (HBsAg). The expression of the surface displayed HBsAg by the chimeric virus was confirmed through a double antibody sandwich ELISA. Assessment of the coat protein composition of the chimeric virus particles by SDS-PAGE analysis showed that 50% of the coat proteins were fused to the HBsAg. Biological activity of the expressed HBsAg was assessed through the stimulation of in vitro antibody production by cultured peripheral blood mononuclear cells (PBMC). PBMC that were cultured in the presence of the chimeric virus showed up to an approximately three-fold increase in the level of anti HBsAg immunoglobulin thus suggesting the possible use of this new chimeric virus as an effective Hepatitis B vaccine.
    Matched MeSH terms: Hepatitis B Surface Antigens/biosynthesis*; Recombinant Proteins/biosynthesis*
  14. Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, et al.
    BMC Microbiol, 2018 01 04;18(1):3.
    PMID: 29439680 DOI: 10.1186/s12866-017-1145-9
    BACKGROUND: Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared.

    RESULTS: The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation.

    CONCLUSION: Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.

    Matched MeSH terms: Recombinant Proteins/biosynthesis; Interferon-alpha/biosynthesis*
  15. Quintero-Yanes A, Lee CM, Monson R, Salmond G
    Environ Microbiol, 2020 07;22(7):2921-2938.
    PMID: 32352190 DOI: 10.1111/1462-2920.15048
    Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
    Matched MeSH terms: Prodigiosin/biosynthesis; Carbapenems/biosynthesis
  16. Nur Husna SM, Siti Sarah CO, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK
    Sci Rep, 2021 01 13;11(1):1245.
    PMID: 33441633 DOI: 10.1038/s41598-020-79208-y
    The breakdown of nasal epithelial barrier occurs in allergic rhinitis (AR) patients. Impairment of cell junction molecules including tight junctions (TJs) and desmosomes plays causative roles in the pathogenesis of AR. In this study, we investigated the transcript expression levels of TJs including occludin (OCLN), claudin-3 and -7 (CLDN3 and CLDN7), desmoglein 3 (DSG3) and thymic stromal lymphopoietin (TSLP) in AR patients (n = 30) and non-allergic controls (n = 30). Nasal epithelial cells of non-allergic controls and AR patients were collected to examine their mRNA expression levels, and to correlate with clinico-demographical and environmental parameters. We demonstrated that the expression of OCLN (p = 0.009), CLDN3 (p = 0.032) or CLDN7 (p = 0.004) transcript was significantly lower in AR patients compared with non-allergic controls. No significant difference was observed in the expression of DSG3 (p = 0.750) or TSLP (p = 0.991) transcript in AR patients compared with non-allergic controls. A significant association between urban locations and lower OCLN expression (p = 0.010), or exposure to second-hand smoke with lower CLDN7 expression (p = 0.042) was found in AR patients. Interestingly, none of the TJs expression was significantly associated with having pets, frequency of changing bedsheet and housekeeping. These results suggest that defective nasal epithelial barrier in AR patients is attributable to reduced expression of OCLN and CLDN7 associated with urban locations and exposure to second-hand smoke, supporting recent findings that air pollution represents one of the causes of AR.
    Matched MeSH terms: Claudins/biosynthesis*; Occludin/biosynthesis*
  17. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*; Polyhydroxyalkanoates/biosynthesis*
  18. Dinarvand M, Rezaee M, Foroughi M
    Braz J Microbiol, 2017 Jul-Sep;48(3):427-441.
    PMID: 28359854 DOI: 10.1016/j.bjm.2016.10.026
    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.
    Matched MeSH terms: Glycoside Hydrolases/biosynthesis*; beta-Fructofuranosidase/biosynthesis*
  19. Sebastian AA, Kannan TP, Norazmi MN, Nurul AA
    J Tissue Eng Regen Med, 2018 08;12(8):1856-1866.
    PMID: 29774992 DOI: 10.1002/term.2706
    Stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for bone tissue regeneration. This study evaluated the effects of interleukin-17A (IL-17A) on the osteogenic differentiation of SHED. SHED were cultured in complete alpha minimum essential medium supplemented with osteoinducing reagents and treated with recombinant IL-17A. The cells were quantitatively analysed for proliferative activity by MTS assay, cell markers expression, and apoptotic activity by flow cytometry. For osteogenic differentiation, alkaline phosphatase (ALP) activity was quantified; mineralization assays were carried out using von Kossa and Alizarin red, and expression of osteogenic markers were analysed by real-time polymerase chain reaction and Western blot. The results showed that treatment with IL-17A increased proliferative activity in a dose-dependent manner, but reduced the expression of stem cell markers (c-Myc and Nanog) as the days progressed. IL-17A induced osteogenic differentiation in SHED as evidenced by high ALP activity, increased matrix mineralization, and upregulation of the mRNA expression of the osteogenic markers ALP, alpha 1 type 1 collagen (Col1A1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) but downregulation of receptor activator of nuclear factor κB ligand (RANKL) as well as altering the OPG/RANKL ratio. Findings from our study indicate that IL-17A enhances proliferation and osteogenic differentiation of SHED by regulating OPG/RANKL mechanism thus suggests therapeutic potential of IL-17A in bone regeneration.
    Matched MeSH terms: Osteoprotegerin/biosynthesis*; RANK Ligand/biosynthesis*
  20. Chutrakul C, Alcocer M, Bailey K, Peberdy JF
    Chem Biodivers, 2008 Sep;5(9):1694-706.
    PMID: 18816522 DOI: 10.1002/cbdv.200890158
    Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens. This antagonism is partly based on their ability to produce an impressive inventory of secondary metabolites. An important group of bioactive metabolites produced by Trichoderma spp. are the non-ribosomal peptides (NRPs), especially the peptaibols. A virulent antagonistic strain, T. asperellum, which had been used in biological control strategies in Malaysia and previously examined for mycolytic enzyme production, has been studied for its potential for peptaibol production. The present research demonstrated the ability of T. asperellum to produce at least two metabolites which were identified as acid trichotoxin 1704E (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-Glu-Vol) and neutral trichotoxin 1717A (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Vol). Addition of free Aib to the culture medium enhanced the production of trichotoxins. Biological activity of these substances was investigated against Bacillus stearothermophilus. The general characteristics of peptaibols, also found in the trichotoxins, include the presence of high proportions of the uncommon amino acid Aib, the protection of the N- and C-termini by an acetyl group and reduction of the C-terminus to 2-amino alcohols, respectively, amphipathy and microheterogeneity.
    Matched MeSH terms: Anti-Bacterial Agents/biosynthesis; Peptaibols/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links