METHODS: A cross-sectional study was designed to evaluate the prevalence and risk factors associated with T. evansi infection among cattle in Peninsular Malaysia. Polymerase chain reaction (PCR) was employed on 1045 blood samples collected from 43 farms. A well-structured questionnaire was used to collect data on risk factors associated with T. evansi prevalence. The RoTat 1.2 set of primers was used to amplify products of 205 base pair.
RESULTS: The overall prevalence was found to be 17.9% (187/1045; 95% CI = 15.66-20.31). Trypanosoma evansi was detected among cattle in all the States of Peninsular Malaysia. Breeds of cattle and closeness to waste area, where the risk factors significantly (p
METHODS: A total of 1114 subjects comprising of 536 PD patients and 578 healthy controls of Malay ancestry were recruited and genotyped using Taqman® allelic discrimination assays.
RESULTS: The G allele of rs10513789 (OR = 0.83, p = 0.001) and A allele of rs12637471 (OR = 0.79, p = 0.007) in the MCCC1/LAMP3 locus were associated with a protective effect against developing PD in the Malay population. A recessive model of penetrance showed a protective effect of the GG genotype for rs10513789 and the AA genotype for rs12637471. No association with PD was found with the other MCCC1/LAMP3 rs12493050 variant or with the DGKQ (rs11248060) variant. No significant associations were found between the four variants with the age at PD diagnosis.
CONCLUSION: MCCC1/LAMP3 variants rs10513789 and rs12637471 protect against PD in the Malay population.
METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey.
RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method.
CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.