AIM OF THE REVIEW: Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward.
METHODS: In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies.
FINDINGS: Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes.
CONCLUSION: The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
MATERIALS AND METHODS: In this up to 33-week, open-label, active-controlled, parallel-group trial, adults [glycated haemoglobin (HbA1c) 7%-10% (53-86 mmol/mol); body mass index ≥20 kg/m(2) ; intent to fast] were randomized (1:1) ≥10 weeks before Ramadan to either switch to once-daily liraglutide (final dose 1.8 mg) or continue pre-trial sulphonylurea at maximum tolerated dose, both with metformin.
PRIMARY ENDPOINT: change in fructosamine, a validated marker of short-term glycaemic control, during Ramadan.
RESULTS: Similar reductions in fructosamine levels were observed for both groups during Ramadan [liraglutide (-12.8 µmol/L); sulphonylurea (-16.4 µmol/L); estimated treatment difference (ETD) 3.51 µmol/L (95% CI: -5.26; 12.28); p = 0.43], despite lower fructosamine levels in the liraglutide group at start of Ramadan. Fewer documented symptomatic hypoglycaemic episodes were reported in liraglutide-treated (2%, three subjects) versus sulphonylurea-treated patients (11%, 18 subjects). No severe hypoglycaemic episodes were reported by either group. Body weight decreased more during Ramadan with liraglutide (ETD: -0.54 kg; 95% CI: -0.94;-0.14; p = 0.0091). The proportion of patients reporting adverse events was similar between groups. Liraglutide led to greater HbA1c reduction [ETD: -0.59% (-6.40 mmol/mol), 95% CI: -0.79; -0.38%; -8.63; -4.17 mmol/mol; p
OBJECTIVE: Our objective was to systematically review the published cost-effectiveness studies of insulin analogues for the treatment of patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
METHODS: We searched major databases and health technology assessment agency reports for economic evaluation studies published up until 30 September 2015. Two reviewers performed data extraction and assessed the quality of the data using the CHEERS (Consolidated Health Economic Evaluation Reporting Standards) guidelines.
RESULTS: Seven of the included studies assessed short-acting insulin analogues, 12 assessed biphasic insulin analogues, 30 assessed long-acting insulin analogues and one assessed a combination of short- and long-acting insulin analogues. Only 17 studies involved patients with T1DM, all were modelling studies and 12 were conducted in Canada. The incremental cost-effectiveness ratios (ICERs) for short-acting insulin analogues ranged from dominant to $US435,913 per quality-adjusted life-year (QALY) gained, the ICERs for biphasic insulin analogues ranged from dominant to $US57,636 per QALY gained and the ICERs for long-acting insulin analogues ranged from dominant to $US599,863 per QALY gained. A total of 15 studies met all the CHEERS guidelines reporting quality criteria. Only 26 % of the studies assessed heterogeneity in their analyses.
CONCLUSION: Current evidence indicates that insulin analogues are cost effective for T1DM; however, evidence for their use in T2DM is not convincing. Additional evidence regarding compliance and efficacy is required to support the broader use of long-acting and biphasic insulin analogues in T2DM. The value of insulin analogues depends strongly on reductions in hypoglycaemia event rates and its efficacy in lowering glycated haemoglobin (HbA1c).
PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.
Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.
Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.
Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.
AIM: The aim of this paper was to review the role of CMKLR-1 receptor and the potential therapeutic target in the management of chemerin induced type 2 diabetes mellitus and cancer.
PATHOPHYSIOLOGY: Increased chemerin secretion activates an inflammatory response. The inflammatory response will increase the oxidative stress in adipose tissue and consequently results in an insulin-resistant state. The occurrence of inflammation, oxidative stress and insulin resistance leads to the progression of cancers.
CONCLUSION: Chemerin is one of the markers that may involve in development of both cancer and insulin resistance. Chemokine like receptor- 1 (CMKLR-1) receptor that regulates chemerin levels exhibits a potential therapeutic target for insulin resistance, type 2 diabetes and cancer treatment.
METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.
RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.
CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.
AIM OF STUDY: To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models.
MATERIALS AND METHODS: L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein.
RESULTS: The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets.
CONCLUSION: MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.