Displaying publications 221 - 240 of 407 in total

Abstract:
Sort:
  1. Yap WH, Ooi BK, Ahmed N, Lim YM
    J Biosci, 2018 Jun;43(2):277-285.
    PMID: 29872016
    Secretory phospholipase A2-IIA (sPLA2-IIA) is one of the key enzymes causing lipoprotein modification and vascular inflammation. Maslinic acid is a pentacyclic triterpene which has potential cardioprotective and anti-inflammatory properties. Recent research showed that maslinic acid interacts with sPLA2-IIA and inhibits sPLA2-IIA-mediated monocyte differentiation and migration. This study elucidates the potential of maslinic acid in modulating sPLA2-IIA-mediated inflammatory effects in THP-1 macrophages. We showed that maslinic acid inhibits sPLA2-IIA-mediated LDL modification and suppressed foam cell formation. Further analysis revealed that sPLA2-IIA only induced modest LDL oxidation and that inhibitory effect of maslinic acid on sPLA2-IIA-mediated foam cells formation occurred independently of its anti-oxidative properties. Interestingly, maslinic acid was also found to significantly reduce lipid accumulation observed in macrophages treated with sPLA2-IIA only. Flow cytometry analysis demonstrated that the effect observed in maslinic acid might be contributed in part by suppressing sPLA2-IIA-induced endocytic activity, thereby inhibiting LDL uptake. The study further showed that maslinic acid suppresses sPLA2-IIA-induced up-regulation of PGE2 levels while having no effects on COX-2 activity. Other pro-inflammatory mediators TNF-a and IL-6 were not induced in sPLA2-IIA-treated THP-1 macrophages. The findings of this study showed that maslinic acid inhibit inflammatory effects induced by sPLA2-IIA, including foam cells formation and PGE2 production.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/genetics
  2. Lim CH, Lin CH, Chen DY, Chen YM, Chao WC, Liao TL, et al.
    PLoS One, 2016;11(11):e0166339.
    PMID: 27832150 DOI: 10.1371/journal.pone.0166339
    OBJECTIVE: To investigate the risk of tuberculosis (TB) among rheumatoid arthritis (RA) patients within 1 year after initiation of tumor necrosis factor inhibitor (TNFi) therapy from 2008 to 2012.

    METHODS: We used the 2003-2013 Taiwanese National Health Insurance Research Database to identify RA patients who started any RA-related medical therapy from 2008 to 2012. Those who initiated etanercept or adalimumab therapy during 2008-2012 were selected as the TNFi group and those who never received biologic disease-modifying anti-rheumatic drug therapy were identified as the comparison group after excluding the patients who had a history of TB or human immunodeficiency virus infection/acquired immune deficiency syndrome. We used propensity score matching (1:6) for age, sex, and the year of the drug index date to re-select the TNFi group and the non-TNFi controls. After adjusting for potential confounders, hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to examine the 1-year TB risk in the TNFi group compared with the non-TNFi controls. Subgroup analyses according to the year of treatment initiation and specific TNFi therapy were conducted to assess the trend of 1-year TB risk in TNFi users from 2008 to 2012.

    RESULTS: This study identified 5,349 TNFi-treated RA patients and 32,064 matched non-TNFi-treated controls. The 1-year incidence rates of TB were 1,513 per 105 years among the TNFi group and 235 per 105 years among the non-TNFi controls (incidence rate ratio, 6.44; 95% CI, 4.69-8.33). After adjusting for age, gender, disease duration, comoridities, history of TB, and concomitant medications, TNFi users had an increased 1-year TB risk (HR, 7.19; 95% CI, 4.18-12.34) compared with the non-TNFi-treated controls. The 1-year TB risk in TNFi users increased from 2008 to 2011 and deceased in 2012 when the Food and Drug Administration in Taiwan announced the Risk Management Plan for patients scheduled to receive TNFi therapy.

    CONCLUSION: This study showed that the 1-year TB risk in RA patients starting TNFi therapy was significantly higher than that in non-TNFi controls in Taiwan from 2008 to 2012.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/antagonists & inhibitors*
  3. Mi Y, Chin YX, Cao WX, Chang YG, Lim PE, Xue CH, et al.
    Int J Biol Macromol, 2020 Mar 15;147:284-294.
    PMID: 31926226 DOI: 10.1016/j.ijbiomac.2020.01.072
    Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, has gradually emerged as a public health challenge worldwide. Carrageenan is a popular food additive that has been in use for decades. However, controversy exists regarding to the safety of carrageenan due to its exacerbation of colitis in experimental models. In this study, we studied the effects of vehicle and host intestinal microflora on carrageenan inflammatory properties in C57BL/6 J mice. We found that in high-fat diet model, native carrageenan in drinking water increased the disease activity index (DAI), myeloperoxidase (MPO) activity and the mRNA expression of TLR4 in colon, whereas carrageenan-supplemented diet has no visible effects. However, no signs of colitis were observed under low-fat diet regardless of the mode of vehicle used. Moreover, we discovered that carrageenan-induced colitis in high-fat diet model was robustly correlated with changes in the composition of gut microbiota, specifically Alistipes finegoldii and Bacteroides acidifaciens. Hence, we propose that the inflammatory property of carrageenan is influenced greatly by its intake form via modification of host intestinal microecology.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  4. Hafiz ZZ, Amin M'M, Johari James RM, Teh LK, Salleh MZ, Adenan MI
    Molecules, 2020 Feb 17;25(4).
    PMID: 32079355 DOI: 10.3390/molecules25040892
    Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats' model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer's disease through inhibiting the AChE, inflammation, and oxidative stress activities.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  5. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/genetics
  6. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K, et al.
    Int J Rheum Dis, 2019 Jul;22(7):1247-1254.
    PMID: 31155849 DOI: 10.1111/1756-185X.13602
    AIM: The purpose of our investigation is to evaluate the anti-arthritic potential of isolated rosmarinic acid from the rind of Punica granatum.

    METHOD: Rosmarinic acid was isolated by bioactivity-guided isolation from butanolic fraction of Punica granatum and acute toxicity of rosmarinic acid was carried out. The experiment was conducted at doses of 25 and 50 mg/kg, in Freund's complete adjuvant (FCA)-induced arthritic rats. Various parameters, that is arthritic score, paw volume, thickness of paw, hematological, antioxidant and inflammatory parameters such as glutathione (GSH), superoxide dismutase (SOD), malonaldehyde (MDA) and tumor necrosis factor-α (TNF-α) were also estimated.

    RESULTS: Rosmarinic acid significantly decreased the arthritic score, paw volume, joint diameter, white blood cell count and erythrocyte sedimentation rate. It also significantly increased body weight, hemoglobin and red blood cells. The significantly decreased levels of TNF-α were observed in treated groups as compared to arthritic control rats (P 

    Matched MeSH terms: Tumor Necrosis Factor-alpha/blood
  7. Niazi FH, Noushad M, Tanvir SB, Ali S, Al-Khalifa KS, Qamar Z, et al.
    Photodiagnosis Photodyn Ther, 2020 Mar;29:101665.
    PMID: 31978565 DOI: 10.1016/j.pdpdt.2020.101665
    BACKGROUND: In order to prove the idea that topical application of drugs can improve the clinical parameters affecting periodontal disease, a sound comparison should be made between topical therapeutic models. The aim of the present study was to assess the clinical efficacy of photodynamic therapy (PDT) and Salvadora persica (SP) gel as adjuncts to scaling and root planning (SRP) in the treatment of chronic periodontitis.

    METHODS: The selected patients were divided into three groups, Group I (PDT + SRP), Group II (SP + SRP) and group III (SRP alone). Clinical inflammatory periodontal parameters including plaque index (PI), bleeding on probing (BOP), probing depth (PD) and clinical attachment level (CAL) gain were assessed. Assessment of crevicular fluid interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) was performed using enzyme-linked immunosorbent assay technique. All measurements were recorded at baseline, 3 months and 6 months follow-up periods, respectively.

    RESULTS: A total of 73 patients completed the study. A significant improvement in the BOP was seen in Group II at both follow up visits when compared with other groups (p < 0.05). Only in Group-I that showed statistically significant reduction in moderate periodontal pockets at 3 months (p = 0.021), and significant reductions in deep pockets at 3-months (p = 0.003) and 6-months (p = 0.002), respectively. CAL gain also was reported to be seen in group-I at both visits (p < 0.05). Group- I and II significantly reduced the levels of IL-6 at 3-month period compared to Group-III. This reduction was further maintained by group-II and group-III at 6 months, respectively. TNF-α showed statistically significant decrease in Group II as compared to Group I and Group-III and this reduction was maintained by the end of 6-month visit (p = 0.045).

    CONCLUSION: Both the treatment modalities PDT and SP helped in reducing periodontal inflammation. PDT reported significant gain in clinical attachment level, whereas the SP significantly reduced the bleeding levels.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  8. Vavricka SR, Gubler M, Gantenbein C, Spoerri M, Froehlich F, Seibold F, et al.
    Inflamm Bowel Dis, 2017 07;23(7):1174-1181.
    PMID: 28452862 DOI: 10.1097/MIB.0000000000001109
    BACKGROUND: Extraintestinal manifestations (EIMs) in patients with inflammatory bowel disease (IBD) are frequently observed. Little is known about the efficacy of anti-tumor necrosis factor (TNF) in EIM management. We assessed the effect of 3 anti-TNF agents (infliximab, adalimumab, and certolizumab pegol) on EIM evolution.

    METHODS: Data on 1249 patients from the Swiss IBD Cohort Study (SIBDCS) were analyzed. All EIMs were diagnosed by relevant specialists. Response was classified into improvement, stable disease, and clinical worsening based on the physician's interpretation.

    RESULTS: Of the 366 patients with at least 1 EIM, 213 (58.2%) were ever treated with an anti-TNF. A total of 299 treatments were started for 355 EIMs. Patients with EIM were significantly more often treated with anti-TNF compared with those without EIM (58.2% versus 21.0%, P < 0.001). Infliximab was the most frequently used drug (63.2%). In more than 71.8%, a clinical response of the underlying EIM to anti-TNF therapy was observed. In 92 patients (43.2%), anti-TNF treatments were started for the purpose of treating EIM rather than IBD. Response rates to anti-TNF were generally good and best for psoriasis, aphthous stomatitis, uveitis, and peripheral arthritis. In 11 patients, 14 EIM occurred under anti-TNF treatment.

    CONCLUSIONS: Anti-TNF was frequently used among patients with EIM. In more than 40%, anti-TNF treatments are started to treat EIM rather than IBD. Given the good response rates, anti-TNF seems to be a valuable option in the treatment of EIM, whereas appearance of EIM under anti-TNF does not seem to be a source of considerable concern.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/immunology*
  9. Othman ZA, Zakaria Z, Suleiman JB, Che Jalil NA, Wan Ghazali WS, Mohamed M
    Food Funct, 2022 Aug 01;13(15):8119-8130.
    PMID: 35796099 DOI: 10.1039/d2fo00949h
    This study explores the anti-atherosclerotic effects of bee bread in the context of oxidative stress, inflammation, and apoptosis phenomena in an obesity animal model, and its vitamin composition. Forty male Sprague-Dawley rats were administered with a normal diet (Normal group) and a high-fat diet (HFD) to induce obesity. After 6 weeks, obese rats that received the HFD were treated either with distilled water (Ob group), bee bread at 0.5 g per kg per day (Ob + Bb group), or orlistat at 10 mg per kg per day (Ob + Or group) concomitant with the HFD for another 6 weeks. Bee bread significantly improved atherosclerotic changes by enhancing the immunoexpressions of Nrf2/Keap1, impeding the immunoexpressions of NF-κβ downstream proteins, and intensifying Bcl-2 upregulation, attributed to the improvement in mast cell adherence and collagen deposition in the aortic wall of the Ob + Bb group. We have demonstrated that the treatment with bee bread attenuates the progression of atherosclerosis through its inhibition of vascular oxidative stress, and retardation of inflammatory reaction and apoptosis in obese rats, indicating its potential therapeutic targets for obesity-related vascular diseases. This could be partly attributed to the components of vitamins such as vitamins A, C and E that are present in bee bread, which need further study for the exact molecular mechanism of action.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  10. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  11. Arshad L, Haque MA, Harikrishnan H, Ibrahim S, Jantan I
    Mol Biol Rep, 2024 Jul 11;51(1):789.
    PMID: 38990383 DOI: 10.1007/s11033-024-09722-z
    BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide.

    METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR.

    RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1β secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/β, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment.

    CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  12. Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, et al.
    Pathol Res Pract, 2023 Nov;251:154895.
    PMID: 37879146 DOI: 10.1016/j.prp.2023.154895
    PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro.

    METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.

    RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.

    CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  13. Teasdale JE, Hazell GG, Peachey AM, Sala-Newby GB, Hindmarch CC, McKay TR, et al.
    Sci Rep, 2017 Jan 06;7:39945.
    PMID: 28059114 DOI: 10.1038/srep39945
    Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/pharmacology*
  14. Oesophago-Gastric Anastomotic Audit (OGAA) Collaborative: Writing Committee, Steering Committee, National Leads, Site Leads, Collaborators
    Eur J Surg Oncol, 2021 Jun;47(6):1481-1488.
    PMID: 33451919 DOI: 10.1016/j.ejso.2020.12.006
    BACKGROUND: No evidence currently exists characterising global outcomes following major cancer surgery, including esophageal cancer. Therefore, this study aimed to characterise impact of high income countries (HIC) versus low and middle income countries (LMIC) on the outcomes following esophagectomy for esophageal cancer.

    METHOD: This international multi-center prospective study across 137 hospitals in 41 countries included patients who underwent an esophagectomy for esophageal cancer, with 90-day follow-up. The main explanatory variable was country income, defined according to the World Bank Data classification. The primary outcome was 90-day postoperative mortality, and secondary outcomes were composite leaks (anastomotic leak or conduit necrosis) and major complications (Clavien-Dindo Grade III - V). Multivariable generalized estimating equation models were used to produce adjusted odds ratios (ORs) and 95% confidence intervals (CI95%).

    RESULTS: Between April 2018 to December 2018, 2247 patients were included. Patients from HIC were more significantly older, with higher ASA grade, and more advanced tumors. Patients from LMIC had almost three-fold increase in 90-day mortality, compared to HIC (9.4% vs 3.7%, p 

    Matched MeSH terms: Necrosis/etiology
  15. Liu X, Yunus Y, Lu D, Aghakhanian F, Saw WY, Deng L, et al.
    Hum Genet, 2015 Apr;134(4):375-92.
    PMID: 25634076 DOI: 10.1007/s00439-014-1525-2
    The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/genetics
  16. Mak KK, Shiming Z, Epemolu O, Dinkova-Kostova AT, Wells G, Gazaryan IG, et al.
    ChemistryOpen, 2022 Oct;11(10):e202200181.
    PMID: 36284193 DOI: 10.1002/open.202200181
    This is the first study investigating the nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity of compounds containing a new scaffold, tetrahydrobenzo[b]thiophene. Eighteen compounds were synthesised and confirmed their NRF2 activation through NQO1 enzymatic activity and mRNA expression of NQO1 and HO-1 in Hepa-1c1c7 cells. The compounds disrupted the interaction between Kelch-like ECH-associated protein 1 (KEAP1) and NRF2 via interfering with the KEAP1's Kelch domain. The compounds exhibited anti-inflammatory activity in Escherichia coli Lipopolysaccharide (LPSEc )-stimulated RAW 264.7 cells. The anti-inflammatory activity of the compounds was associated with their ability to activate NRF2. The compounds reversed the elevated levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and inflammatory mediators (PGE2, COX-2, and NF-κB). The compounds were metabolically stable in human, rat, and mouse liver microsomes and showed optimum half-life (T1/2 ) and intrinsic clearance (Clint ). The binding mode of the compounds and physicochemical properties were predicted via in silico studies.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  17. Fong LY, Ng CT, Yong YK, Hakim MN, Ahmad Z
    Vascul Pharmacol, 2019 06;117:15-26.
    PMID: 30114509 DOI: 10.1016/j.vph.2018.08.005
    Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/pharmacology*
  18. Tee MH, Lee YY, Majid NA, Noori NM, Raj SM
    PMID: 23682433
    We studied asymptomatic primary schoolchildren in northeastern Malaysia with light to moderate trichuriasis to determine the effect of albendazole treatment on growth rates and TNF-alpha levels. Thirty-seven schoolchildren aged 6-7 years with stool samples positive for Trichuris trichiura and negative for other geohelminths and protozoa were randomized to receive albendazole 400 mg or a placebo daily for 2 days. Anthropometric parameters at baseline, 3, 6 and 12 months were compared between the 2 groups. The placebo group had a significantly greater increase in height (p = 0.04) than the albendazole treatment group. There were no significant differences in urinary TNF-alpha levels (p = 0.8) between the 2 groups and no significant changes between baseline and 1 month post-treatment levels. Further studies are needed to determine the etiology of this apparent association between the albendazole treatment group and the delay in growth rate at 6 months post-treatment.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/urine
  19. Somchit MN, Sanat F, Hui GE, Wahab SI, Ahmad Z
    Adv Pharm Bull, 2014 Dec;4(4):401-4.
    PMID: 25436198 DOI: 10.5681/apb.2014.059
    PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model.

    METHODS: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil) or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day). Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN) and creatinine activities were measured.

    RESULTS: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine.

    CONCLUSION: RESULTS from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

    Matched MeSH terms: Kidney Cortex Necrosis
  20. Feng Z, Wagatsuma Y, Kikuchi M, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2014 Sep;35(28):8078-91.
    PMID: 24976242 DOI: 10.1016/j.biomaterials.2014.05.072
    Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical picture of the compaction process, quantitatively elucidate the panorama of the micro mechanical niche and reveal an intrinsic biphasic relationship between cellular traction force and matrix elasticity. Our results also infer the underlying mechanism of tensional homoeostasis and stress shielding of fibroblasts. With this study, and sequel investigations on the putative principle proposed herein, we anticipate a refocus of the research on cellular mechanobiology, in vitro and in vivo.
    Matched MeSH terms: Necrosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links