Currently, the laboratory diagnosis of toxocariasis, caused by Toxocara canis or T. cati, mainly relies on serological tests. Unfortunately, however, the specificities of most of the commercial tests that are available for the serodiagnosis of this disease are not very high and this may cause problems, especially in tropical countries where co-infections with other helminths are common. In an effort to develop a serological assay with improved specificity for the detection of Toxocara infection, an IgG(4)-ELISA based on a recombinant version (rTES-30USM) of the 30-kDa Toxocara excretory-secretory antigen (TES-30) has recently been developed. To produce the antigen, the TES-30 gene was cloned via assembly PCR, subcloned into a His-tagged prokaryotic expression vector, and purified by affinity chromatography using Ni(2+)-nitrilotriacetic-acid (Ni-NTA) resin. The performance of the ELISA based on the recombinant antigen was then compared with that of commercial kit, based on an IgG-ELISA, for the serodiagnosis of toxocariasis (Toxocara IgG-ELISA; Cypress Diagnostics, Langdorp, Belgium). Both assays were used to test 338 serum samples, including 26 samples from probable cases of toxocariasis. Assuming that all the probable cases were true cases, the assay based on rTES-30USM demonstrated a sensitivity of 92.3% (24/26) and a specificity of 89.6% (103/115) whereas the commercial kit exhibited a sensitivity of 100% (26/26) but a specificity of only 55.7% (64/115). The high sensitivity and specificity exhibited by the new IgG(4)-ELISA should make the assay a good choice for use in tropical countries and any other area where potentially cross-reactive helminthic infections are common.
Fifty faecal samples from diarrheic calves between 1 and 6 months old were collected per rectum from 5 farms around Petaling District in Selangor, Malaysia for Cryptosporidium species detection and genotyping investigation. Oocysts were purified using sedimentation and gradient centrifugation, then examined by immunofluorescence assay (IFAT). Genomic DNA was extracted from all samples and nested PCR was performed to amplify the SSU rRNA gene. Eighteen samples (36%) were positive for Cryptosporidium species by PCR. The sequence and phylogenetic analysis of 14 isolates indicated that Cryptosporidium parvum was most common (11 isolates) followed by Cryptosporidium deer-like genotype (3 isolates). The present work reports the first data on Cryptosporidium genotyping from cattle in Malaysia.
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
Forty-eight strains of Salmonella enterica subsp. enterica serovar Agona and 33 strains of Salmonella enterica subsp. enterica serovar Weltevreden were characterized by random amplified polymorphic DNA (RAPD) fingerprinting using 3 different arbitrary primer, Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) and antimicrobial susceptibility testing. By using RAPD, 81 strains (44 strains of S. Agona and 33 strains of S. Weltevreden) can be clustered into 14 groups and 6 single isolates whereas ERIC-PCR produced 7 clusters and 3 single isolates. Thirteen antimicrobial agents were used and all the isolates were resistant to erythromycin and showed Multiple Antimicrobial Resistance indexes, ranging from 0.08 to 0.62. Poultry still remain as the common reservoir for multi-drug-resistant Salmonella. On the other hand, vegetables contaminated with S. Weltevreden showed a gain in antimicrobial resistance. Besides that, consistent antibiograms were observed from S. Weltevreden isolated at Kajang wet market on 2000/08/02.
The sensitivity and specificity of 18S rRNA polymerase chain reaction (PCR) in the detection of fungal aetiology of microbial keratitis was determined in thirty patients with clinical diagnosis of microbial keratitis.
A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.
Choline-binding proteins (CBP) have been associated with the pathogenesis of Streptococcus pneumoniae. We screened, using PCR, for the presence of genes (cbpA, D, E, G) encoding these proteins in 34 isolates of pneumococci of known serotypes and penicillin susceptibility from invasive and non-invasive disease. All isolates harboured cbpD and cbpE whereas cbpA and cbpG were found in 47% and 59% respectively; the latter were more frequent in vaccine-associated types and together accounted for 77% of these isolates. No association was observed with penicillin susceptibility but 85% of non-invasive isolates were positive for these genes.
P-glycoprotein (PgP) is the most extensively studied ATP-binding cassette (ABC) coded by MDR1 gene. To date, 29 single nucleotide polymorphisms (SNPs) have been identified; but only SNP C3435T has been correlated with intestinal PgP expression levels and shown to influence the absorption of orally taken drugs that are PgP substrates. Individuals homozygous for the T allele have more than fourfold lower PgP expression compared with C/C individuals. We developed a one step primer based allele specific PCR method to detect SNP at C3435T to investigate the distribution of this genotype in the local population.
Subtype-specific multiplex reverse transcription-polymerase chain reaction (RT-PCR) was developed to simultaneously detect three subtypes (H5, H7 and H9) of avian influenza virus (AIV) type A. The sensitivity of the multiplex RT-PCR was evaluated and compared to that of RT-PCR-enzyme-linked immunosorbent assay (ELISA) and conventional RT-PCR. While the sensitivity of the multiplex RT-PCR is as sensitive as the conventional RT-PCR, it is 10 times less sensitive than RT-PCR-ELISA. The multiplex RT-PCR is also as sensitive as the virus isolation method in detecting H9N2 from tracheal samples collected at day 3 and 5 post inoculation. Hence, the developed multiplex RT-PCR assay is a rapid, sensitive and specific assay for detecting of AIV subtypes.
In this study we describe a triplex real-time PCR assay that enables the identification of S. aureus and detection of two important antibiotic resistant genes simultaneously using real-time PCR technology in a single assay. In this triplex real-time PCR assay, the mecA (methicillin resistant), femA (species specific S. aureus) and aacA-aphD (aminoglycoside resistant) genes were detected in a single test using dual-labeled Taqman probes. The assay gives simultaneous information for the identification of S. aureus and detection of methicillin and aminoglycoside resistance in staphylococcal isolates. 152 clinical isolates were subjected to this triplex real-time PCR assay. The results of the triplex real-time PCR assay correlated with the results of the phenotypic antibiotic susceptibility testing. The results obtained from triplex real-time PCR assay shows that the primer and probe sets were specific for the identification of S. aureus and were able to detect methicillin- and aminoglycoside-resistant genes. The entire assay can be performed within 3 h which is a very rapid method that can give simultaneous information for the identification of S. aureus and antibiotic resistance pattern of a staphylococcal isolate. The application of this rapid method in microbiology laboratories would be a valuable tool for the rapid identification of the S. aureus isolates and determination of their antibiotic resistance pattern with regards to methicillin and aminoglycosides.
Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.
This study aimed to determine the distribution of Candida species in the oral cavity and differentiate the species based on PCR amplification, including HinfI and MspI digestion, in order to assess the effectiveness of using the rDNA region for species identification. Samples from saliva as well as palate, tongue and cheek mucosa surfaces were collected from 45 individuals, consisting of three groups: periodontal disease patients; denture-wearers; and the control group. The samples were serially diluted, spread on BHI and YPD agar plates and scored for colony-forming units (CFUs). Fifteen random candidal colonies were isolated and subjected to genomic DNA extraction, based on glass beads disruption. Four primers were used to amplify regions in the rDNA, and the ITSI-5.8S-ITSII PCR product was digested by HinfI and MspI restriction enzymes. The microbial loads on all sites of the denture-wearers were found to be significantly higher than control, while in the periodontal disease group only the microbial loads on the tongue were significantly higher than control. Meanwhile, there was no significant difference at other sites. The restriction fragment lengths of the clinical samples were compared to those of seven control species, allowing the differentiation of all seven species and the identification of 14 species from the clinical samples. The MspI restriction digest was not able to distinguish between C. albicans and C. dubliniensis, whereas the HinfI digest could not distinguish between C. tropicalis and C. parapsilosis. It was concluded that PCR-RFLP of the candidal rDNA region has potential for species identification. This study demonstrates the potential use of candidal rDNA as a means for identifying Candida species, based on genotype. The results also indicate the possibility of constructing genetic probes that target specific restriction fragments in the ITSI-5.8S-ITSII region, enabling swift and precise identification of Candida species.
In Malaysia, Shigella spp. was reported to be the third commonest bacterial agent responsible for childhood diarrhoea. Currently, isolation of the bacterium and confirmation of the disease by microbiological and biochemical methods remain as the "gold standard". This study aimed to detect the prevalence of four Shigella virulence genes present concurrently, in randomly selected Malaysian strains via a rapid multiplex PCR (mPCR) assay.
Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.
Four ADP-glucose pyrophosphorylase cDNA clones were isolated from mature leaves and pith of sago palm by the polymerase chain reaction (PCR) technique. Three of them (agpp10, agpp12 and agpl19) encoded the AGP large subunit, while the fourth clone (agpl1) encoded the small subunit. agpp10 and agpp12 were isolated from pith, agpl19 was isolated from mature leaves, while agpl1 from both tissues. In addition, a full-length cDNA of agpl1 was successfully isolated from a cDNA library of mature leaves by a PCR-based screening technique. Semi-quantitative analysis suggests that agpp10 and agpp12 were detectable only in pith, agpl19 only in leaves, while agpl1 was expressed in both leaves and pith tissues.
In this study, recombinant proteins that encompassed the AD I-AD III regions of 56 kDa immunodominant gene of 2 Orientia tsutsugamushi (OT) serotypes; Gilliam and TA763 were expressed in Escherichia coli. Both recombinant proteins exhibited serologic cross-reactivity with the rabbit antisera against various OT serotypes, as evaluated by enzyme-linked immunosorbent assay (ELISA), but not against other rickettsial species, including Rickettsia typhi, R. prowazekii and TT118 SFG rickettsiae. The feasibility of using the recombinant proteins as a diagnostic reagent was further evaluated by ELISA using sera from blood donors and scrub typhus patients. The results suggested a higher affinity of the antihuman IgM than IgG with both recombinant proteins. The IgM ELISA findings were agreeable with the results of indirect immunoperoxidase (IIP) assay especially with sera of high antibody (1:1600). However, more than one antigen are probably needed for development of an effective assay for serodiagnosis of scrub typhus in endemic areas.
Allele frequencies for the nine STRs genetic loci included in the AmpFlSTR Profiler kit were obtained from samples of unrelated individuals comprising 139-156 Malays, 149-153 Chinese and 132-135 Indians, residing in Malaysia.
SLE is an autoimmune and polygenic disorder characterized by an accumulation and deposition of immune complexes. Several studies have indicated differential impact of FcgammaR polymorphism genotypes in different ethnic groups studied. The Fc receptor for IgG class IIA gene (FcgammaRIIA) occurs in two allelic forms. The allele FcgammaRIIA-H131 encodes a receptor with a histidine at the 131 amino acid position; the other allele FcgammaRIIA-R131 encodes an arginine. This polymorphism is believed to determine the affinity of the receptor for hIgG2 in immune complexes. FcgammaRIIA-H131 has a higher capacity for hIgG2 compared to FcgammaRIIA-R131 as measured by in vitro studies of insoluble immune complex clearance. We have investigated the polymorphism for FcgammaRIIA using a novel polymerase chain reaction-allele specific primer (PCR-ASP) method designed specifically to distinguish the two allelic forms. Our studies were based on 175 Chinese and 50 Malays SLE patients as well as 108 and 50 ethnically matched healthy controls for the respective groups. Analysis of the data (chi2 test with Yates correction factors and odds ratios) revealed that there were no significant differences between SLE patients and controls. We have not found evidence of a protective effect conferred by FcgammaRIIA-H131 in the ethnic groups studied.