METHODS: A multiplex analytic microarray system was used to analyze the occurrence of antibodies to 10 different citrullinated peptides (filaggrin [fil307-324], vimentin [Vim2-17, Vim60-75], fibrinogen [Fibα563-583, Fibα580-600, Fibβ36-52, Fibβ62-81a, Fibβ62-81b], enolase [Eno5-21], and type II collagen [CitCII355-378]) in serum samples from 4,089 RA patients (1,231 Malaysian and 2,858 Swedish) and 827 healthy control subjects (249 Malaysian and 578 Swedish). The positive reaction threshold for each peptide was set separately for each population based on a specificity of 98%.
RESULTS: Distinct differences in the frequencies of 5 ACPA fine specificities (Vim60-75, Vim2-17, Fibβ62-81b, Eno5-21, and CitCII355-378) were found between the Malaysian and Swedish RA populations, despite a nearly identical percentage of patients in each population who were positive for anti-cyclic citrullinated peptide 2 antibodies. In Malaysian RA patients compared with Swedish RA patients, the frequencies of antibodies to Vim60-75 (54% versus 44%, corrected P [Pcorr ] = 1.06 × 10-8 ) and CitCII355-378 (17% versus 13%, Pcorr = 0.02) were significantly higher, while the frequencies of antibodies to Vim2-17 (25% versus 32%, Pcorr = 1.91 × 10-4 ), Fibβ62-81b (15% versus 30%, Pcorr = 2.47 × 10-22 ), and Eno5-21 (23% versus 50%, Pcorr = 3.64 × 10-57 ) were significantly lower.
CONCLUSION: Serum ACPA fine specificities differ between RA patients in different populations, although the total proportions of individuals positive for ACPAs are similar. Differing patterns of ACPA fine specificity could be attributed to variations in genetic and/or environmental factors.
OBJECTIVE: We aimed to correlate the ability of these modalities to differentiate Probable AD and Possible AD using the clinical diagnosis as a gold standard. We also investigated the correlation of severity of amyloid deposit in the brain with the diagnosis of AD.
METHODS: A retrospective study of 47 subjects (17 Probable AD and 30 Possible AD) who were referred for PET/CT amyloid scans to our centre was conducted. Hypoperfusion in the temporo-parietal lobes on Tc99m-HMPAO SPECT and loss of grey-white matter contrast in cortical regions on PET/CT Amyloid scans indicating the presence of amyloid β deposit were qualitatively interpreted as positive for AD. SPECT and PET/CT were also read in combination (Combo reading). The severity of amyloid β deposit was semiquantitatively assessed in a visual binary method using a scale of Grade 0-4. The severity of amyloid β deposit was assessed in a visual binary method and a semi-quantitative method using a scale of Grade 0-4.
RESULTS: There was significant correlation of Tc99m-HMPAO SPECT, PET/CT amyloid findings and Combo reading with AD. The sensitivity, specificity, PPV and NPV were 87.5%, 73.7%, 58.3% and 93.3% (SPECT); 62.5%, 77.4%, 58.8% and 80.0% (PET/CT) and 87.5%, 84.2%, 70.0% and 30.0% (Combo reading) respectively. The grade of amyloid deposition was not significantly correlated with AD (Spearman's correlation, p=0.687).
CONCLUSION: There is an incremental benefit in utilizing PET/CT amyloid imaging in cases with atypical presentation and indeterminate findings on conventional imaging of Alzheimer's disease.