MATERIALS AND METHODS: E-cadherin and Galectin-9 expression was examined by immunohistochemistry in 32 cases of OSCC of the buccal mucosa (13 with and 19 without lymph node metastasis), as well as 6 samples of reactive lesions and 5 of normal buccal mucosa.
RESULTS: The expression of E-cadherin in OSCC was significantly lower than the control tissues but galectin-9 expression was conversely higher. Median E-cadherin HSCOREs between OSCCs positive and negative for nodal metastasis were not significantly different. Mean HSCOREs for galectin-9 in OSCC without lymph node metastasis (127.7 ± 81.8) was higher than OSCC with lymph node metastasis (97.9 ± 62.9) but this difference was not statistically significant.
CONCLUSIONS: E-cadherin expression is reduced whilst galectin-9 expression is increased in OSCC. However, the present results suggest that E-cadherin and galectin-9 expression may not be useful as prognostic markers for OSCC.
MATERIALS AND METHODS: In this prospective study, EGFR mutations in exons 18, 19, 20 and 21 in formalin-fixed paraffin-embedded biopsy specimens of consecutive NSCLC patients were asessed by real-time polymerase chain reaction.
RESULTS: EGFR mutations were detected in NSCLCs from 55 (36.4%) of a total of 151 patients, being significantly more common in females (62.5%) than in males (17.2%) [odds ratio (OR), 8.00; 95% confidence interval (CI), 3.77-16.98; p<0.001] and in never smokers (62.5%) than in ever smokers (12.7%) (OR, 11.50; 95%CI, 5.08-26.03; p<0.001). Mutations were more common in adenocarcinoma (39.4%) compared to non-adenocarcinoma NSCLCs (15.8%) (p=0.072). The mutation rates in patients of different ethnicities were not significantly different (p=0.08). Never smoking status was the only clinical feature that independently predicted the presence of EGFR mutations (adjusted OR, 5.94; 95%CI, 1.94- 18.17; p=0.002).
CONCLUSIONS: In Malaysian patients with NSCLC, the EGFR mutation rate was similar to that in other Asian populations. EGFR mutations were significantly more common in female patients and in never smokers. Never smoking status was the only independent predictor for the presence of EGFR mutations.
DATA SOURCE: The China National Knowledge Infrastructure and MEDLINE databases were searched. The systematic review with meta-analysis included genetic studies which assessed the association between neonatal hyperbilirubinemia and 388 G>A, 521 T>C, and 463 C>A variants of SLCO1B1 between January of 1980 and December of 2012. Data selection and extraction were performed independently by two reviewers.
SUMMARY OF THE FINDINGS: Ten articles were included in the study. The results revealed that SLCO1B1 388 G>A is associated with an increased risk of neonatal hyperbilirubinemia (OR, 1.39; 95% CI, 1.07-1.82) in Chinese neonates, but not in white, Thai, Latin American, or Malaysian neonates. The SLCO1B1 521 T>C mutation showed a low risk of neonatal hyperbilirubinemia in Chinese neonates, while no significant associations were found in Brazilian, white, Asian, Thai, and Malaysian neonates. There were no significant differences in SLCO1B1 463 C>A between the hyperbilirubinemia and the control group.
CONCLUSION: This study demonstrated that the 388 G>A mutation of the SLCO1B1 gene is a risk factor for developing neonatal hyperbilirubinemia in Chinese neonates, but not in white, Thai, Brazilian, or Malaysian populations; the SLCO1B1 521 T>C mutation provides protection for neonatal hyperbilirubinemia in Chinese neonates, but not in white, Thai, Brazilian, or Malaysian populations.