Displaying publications 241 - 260 of 406 in total

Abstract:
Sort:
  1. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Tayeb MA, Ismail BS, Khairiatul-Mardiana J
    Environ Monit Assess, 2017 Oct 11;189(11):551.
    PMID: 29022154 DOI: 10.1007/s10661-017-6236-4
    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Sharip Z, Hashim N, Suratman S
    Environ Monit Assess, 2017 Oct 15;189(11):560.
    PMID: 29034408 DOI: 10.1007/s10661-017-6274-y
    This study investigates the presence and distribution of organochlorine pesticides in streams and the lake in the Sembrong Lake Basin in Malaysia. The catchment of Sembrong Lake has been converted to agricultural areas over the past 30 years, with oil palm plantations and modern agricultural farming being the main land use. Surface water samples were collected from eight sites comprising the stream and lake and analysed for 19 organochlorine pesticides (OCPs). In situ measurement of temperature, dissolved oxygen, pH and conductivity were also undertaken at each site. Aldrin, endrin, δ-BHC, 4,4-DDT, methoxychlor and endosulfan were the main OCPs detected in the lake basin. The total OCP concentration ranged between 5.42 and 349.2 ng/L. The most frequently detected OCPs were δ-BHC, heptachlor and aldrin. The maximum values detected were 23.0, 43.2 and 50.4 ng/L respectively. The highest concentration of OCPs was attributed to 4,4-DDT, but such high residue was rare and only detected once. Other OCP residues were low. Significant differences in the mean values were observed between lake and stream for dichlorodiphenyldichloroethylene (DDE) and α-endosulfan concentration (p 
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  6. Auta HS, Emenike CU, Fauziah SH
    Environ Pollut, 2017 Dec;231(Pt 2):1552-1559.
    PMID: 28964604 DOI: 10.1016/j.envpol.2017.09.043
    The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  8. Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:575-581.
    PMID: 28917209 DOI: 10.1016/j.chemosphere.2017.09.035
    Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ  1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Ismail NAH, Wee SY, Aris AZ
    Mar Pollut Bull, 2018 Feb;127:536-540.
    PMID: 29475693 DOI: 10.1016/j.marpolbul.2017.12.043
    Endocrine disrupting compound (EDC) contamination in food is a global concern. Concerning potential environmental and human health exposed to EDCs via food intake, an experiment was conducted on the selected EDCs concentration in the mariculture fish, Trachinotus blochii (golden pomfret), Lutjanus campechanus (snapper), and Lates calcarifer (sea bass) at Pulau Kukup, Johor. Mariculture activity at Pulau Kukup involves active export of fishes to Singapore and Indonesia. The recovery of BPA (bisphenol A), 4OP (4-octylphenol), and 4NP (4-nonylphenol) were 61.54%-93.00%, 16.79%-17.13%, and 61.24%-71.49%, respectively. Relatively high concentration of BPA was recorded in T. blochii (0.322ng/g), followed by L. calcarifer (0.124ng/g) and L. campechanus (0.023ng/g). Furthermore, 4OP and 4NP were detected only in T. blochii at concentrations of 0.084ng/g and 0.078ng/g, respectively. The results of the present study provide insights on monitoring and managing mariculture activity in relation to environmental protection and food safety.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Auta HS, Emenike CU, Jayanthi B, Fauziah SH
    Mar Pollut Bull, 2018 Feb;127:15-21.
    PMID: 29475646 DOI: 10.1016/j.marpolbul.2017.11.036
    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Keshavarzifard M, Zakaria MP, Sharifi R
    Arch Environ Contam Toxicol, 2017 Oct;73(3):474-487.
    PMID: 28497299 DOI: 10.1007/s00244-017-0410-0
    The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g-1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaPeq) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Nasyitah Sobihah N, Ahmad Zaharin A, Khairul Nizam M, Ley Juen L, Kyoung-Woong K
    Chemosphere, 2018 Apr;197:318-324.
    PMID: 29360594 DOI: 10.1016/j.chemosphere.2017.12.187
    Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg-1) and liver tissue of L. griseus (58.248 ± 8.736 mg kg-1). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg-1) and liver tissue (0.027 ± 0.016 mg kg-1). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p 
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  15. Koki IB, Low KH, Juahir H, Abdul Zali M, Azid A, Zain SM
    Chemosphere, 2018 Mar;195:641-652.
    PMID: 29287272 DOI: 10.1016/j.chemosphere.2017.12.112
    Evaluation of health risks due to heavy metals exposure via drinking water from ex-mining ponds in Klang Valley and Melaka has been conducted. Measurements of As, Cd, Pb, Mn, Fe, Na, Mg, Ca, and dissolved oxygen, pH, electrical conductivity, total dissolved solid, ammoniacal nitrogen, total suspended solid, biological oxygen demand were collected from 12 ex-mining ponds and 9 non-ex-mining lakes. Exploratory analysis identified As, Cd, and Pb as the most representative water quality parameters in the studied areas. The metal exposures were simulated using Monte Carlo methods and the associated health risks were estimated at 95th and 99th percentile. The results revealed that As was the major risk factor which might have originated from the previous mining activity. For Klang Valley, adults that ingested water from those ponds are at both non-carcinogenic and carcinogenic risks, while children are vulnerable to non-carcinogenic risk; for Melaka, only children are vulnerable to As complications. However, dermal exposure showed no potential health consequences on both adult and children groups.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Aziz A, Agamuthu P, Alaribe FO, Fauziah SH
    Environ Technol, 2018 Feb;39(4):527-535.
    PMID: 28281885 DOI: 10.1080/09593330.2017.1305455
    Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  17. Maznah Z, Halimah M, Ismail BS
    Bull Environ Contam Toxicol, 2018 May;100(5):677-682.
    PMID: 29516138 DOI: 10.1007/s00128-018-2312-x
    The residual levels and persistence of thiram in the soil, water and oil palm seedling leaves were investigated under field conditions. The experimental plots were carried out on a clay loam soil and applied with three treatments namely; manufacturer's recommended dosage (25.6 g a.i. plot-1), manufacturer's double recommended dosage (51.2 g a.i. plot-1), and control (water) were applied. Thiram residues were detected in the soil from day 0 to day 3 in the range of 0.22-27.04 mg kg-1. Low concentrations of thiram were observed in the water and leave samples in the range of 0.27-2.52 mg L-1 and 1.34-12.28 mg kg-1, respectively. Results have shown that thiram has a rapid degradation and has less persistence due to climatic factors. These findings suggest that thiram is safe when applied at manufacturer's recommended dosage on oil palm seedlings due to low residual levels observed in soil and water bodies.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  18. Haron S, Ray AK
    Med Eng Phys, 2006 Dec;28(10):978-81.
    PMID: 17018258
    A three layer waveguiding silicon dioxide (SiO(2))/silicon nitride (Si(3)N(4))/SiO(2) structure on silicon substrate was proposed as an optically efficient biosensor for calibration of heavy metal ions in drinking water. The catalytic activities of urease and acetylcholine esterase (AchE) were inhibited by the presence of cadmium (Cd(2+)) and lead (Pb(2+)) ions. The detection limit as low as 1 ppb was achieved by employing the technique of total reflection at the interface between the Si(3)N(4) core and composite polyelectrolyte self-assembled (PESA) membranes containing cyclotetrachromotropylene (CTCT) as an indicator.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  19. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN
    Environ Sci Pollut Res Int, 2018 Mar;25(7):7067-7075.
    PMID: 29275478 DOI: 10.1007/s11356-017-1069-9
    The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  20. Meena RAA, Sathishkumar P, Ameen F, Yusoff ARM, Gu FL
    Environ Sci Pollut Res Int, 2018 Feb;25(5):4134-4148.
    PMID: 29247419 DOI: 10.1007/s11356-017-0966-2
    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links