METHODS: Demographic data, underlying diseases, procedures and details on polymyxin B therapy were retrospectively analyzed in a cohort of 84 patients who received intravenous polymyxin B in an intensive care unit from 2010 to 2014.
RESULTS: Polymyxin B was used to treat bacteremia (46.4% of cases) and pneumonia (53.6%). Majority of the pathogens isolated were Acinetobacter spp. (96.4%). The mortality rate was 48.8%, of which 82.9% was attributed to polymyxin B treatment failure. The independent predictors of treatment failure were low doses of polymyxin B (p = 0.002), shorter duration of therapy (p = 0.009), not combining with cefoperazone/sulbactam (p = 0.030), female gender (p = 0.004), administered for treatment of bacteremia (p = 0.023) and renal impairment (p = 0.021). Low polymyxin B doses (p = 0.007), not combining with cefoperazone/sulbactam (p = 0.024), female gender (p = 0.048) and renal impairment (p = 0.022) were also significant predictors for in-hospital mortality.
CONCLUSIONS: To the best of our knowledge, this is the first report on the association of inadequate dose of polymyxin B (<15,000 units/kg/day) with poor outcome in critically ill patients. Besides that, further clinical studies are warranted to evaluate the use of cefoperazone/sulbactam as second antibiotic in the combination therapy.
METHODOLOGY/PRINCIPAL FINDINGS: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%).
CONCLUSIONS/SIGNIFICANCE: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 94 Aeromonas isolates in accordance with results of other recent studies. Aeromonas aquariorum showed to be the most prevalent species (50%) containing an important subset of virulence genes lip/alt/ser/fla/aer. Different combinations of the virulence genes present in the isolates indicate their probable role in the pathogenesis of Aeromonas infections.
METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.
RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.
CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.
OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.
SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.
DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.
MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).
AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.