MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.
RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 0.4 m/s at week 2 to 27.3 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.
CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.
Methods: The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) was used to qualitatively detect the cellular accumulation of ZnO NPs in algal cells, while inductively coupled plasma optical emission spectrometry (ICP OES) was performed to quantify the cell associated-zinc in algal cells. The percentage of cell death, reduction in algal biomass, and loss in photosynthetic pigments were measured to investigate the cytotoxic effects of ZnO NPs on H. pluvialis. Extracellular and intracellular changes in algal cells resulted from the treatment of ZnO NPs were demonstrated through optical, scanning, and transmission electron microscopic studies.
Results: SEM-EDX spectrum evidenced the accumulation of ZnO NPs in algal biomass and ICP OES results reported a significant (p < 0.05) dose- and time-dependent accumulation of zinc in algal cells from 24 h for all the tested concentrations of ZnO NPs (10-200 μg/mL). Further, the study showed a significant (p < 0.05) dose- and time-dependent growth inhibition of H. pluvialis from 72 h at 10-200 μg/mL of ZnO NPs. The morphological examinations revealed substantial surface and intracellular damages in algal cells due to the treatment of ZnO NPs.
Discussion: The present study reported the significant cellular accumulation of ZnO NPs in algal cells and the corresponding cytotoxic effects of ZnO NPs on H. pluvialis through the considerable reduction in algal cell viability, biomass, and photosynthetic pigments together with surface and intracellular damages.