METHODS: A survey on medical physics aspects of IMRT is conducted on radiotherapy departments across Malaysia to assess the usage, experience and QA in IMRT, which is done for the first time in this country. A set of questionnaires was designed and sent to the physicist in charge for their responses. The questionnaire consisted of four sections; (i) Experience and qualification of medical physicists, (ii) CT simulation techniques (iii) Treatment planning and treatment unit, (iv) IMRT process, delivery and QA procedure.
RESULTS: A total of 26 responses were collected, representing 26 departments out of 33 radiotherapy departments in operation across Malaysia (79% response rate). Results showed that the medical physics aspects of IMRT practice in Malaysia are homogenous, with some variations in certain areas of practices. Thirteen centres (52%) performed measurement-based QA using 2D array detector and analysed using gamma index criteria of 3%, 3 mm with variation confidence range. In relation to the IMRT delivery, 44% of Malaysia's physicist takes more than 8 h to plan a head and neck case compared to the UK study possibly due to the lack of professional training.
CONCLUSIONS: This survey provides a picture of medical physics aspects of IMRT in Malaysia where the results/data can be used by radiotherapy departments to benchmark their local policies and practice.
METHODS: A systematic search was performed in PubMed, the Cochrane library, CINAHL, Web of Science, ScienceDirect and Scopus, where 20 studies were selected for analysis of scanning parameters and CM reduction methods.
RESULTS: The mean effective dose (HE) ranged from 0.31 to 2.75 mSv at 80 kVp, 0.69 to 6.29 mSv at 100 kVp and 1.53 to 10.7 mSv at 120 kVp. Radiation dose reductions of 38 to 83% at 80 kVp and 3 to 80% at 100 kVp could be achieved with preserved image quality. Similar vessel contrast enhancement to 120 kVp could be obtained by applying iodine delivery rate (IDR) of 1.35 to 1.45 g s-1 with total iodine dose (TID) of between 10.9 and 16.2 g at 80 kVp and IDR of 1.08 to 1.70 g s-1 with TID of between 18.9 and 20.9 g at 100 kVp.
CONCLUSION: This systematic review found that radiation doses could be reduced to a rate of 38 to 83% at 80 kVp, and 3 to 80% at 100 kVp without compromising the image quality. Advances in knowledge: The suggested appropriate scanning parameters and CM reduction methods can be used to help users in achieving diagnostic image quality with reduced radiation dose.
METHODS: In this article, the steps involved in importing, segmenting, and registering tomographic images using 3D Slicer were thoroughly described, before importing them into GATE for MC simulation. The absorbed doses estimated using GATE were then compared with that of PM. SlicerRT, a 3D Slicer extension, was then used to visualize the isodose from the MC simulation.
RESULTS: A workflow diagram consisting of all the steps taken in the utilization of 3D Slicer for personalized dosimetry in 90 Y radioembolization has been presented in this article. In comparison to the MC simulation, the absorbed doses to the tumor and normal liver were overestimated by PM by 105.55% and 20.23%, respectively, whereas for lungs, the absorbed dose estimated by PM was underestimated by 25.32%. These values were supported by the isodose distribution obtained via SlicerRT, suggesting the presence of beta particles outside the volumes of interest. These findings demonstrate the importance of personalized dosimetry for a more accurate absorbed dose estimation compared to PM.
CONCLUSION: The methodology provided in this study can assist users (especially students or researchers who are new to MC simulation) in navigating intricate steps required in the importation of tomographic data for MC simulation. These steps can also be utilized for other radiation therapy related applications, not necessarily limited to internal dosimetry.
PURPOSE: To investigate the relationship between marrow fat and cortical bone thickness in β-thalassemia and to identify key determinants influencing these variables.
STUDY TYPE: Prospective.
SUBJECTS: Thirty-five subjects in four subject groups of increasing disease severity: 6 healthy control (25.0 ± 5.3 years, 2 male), 4 β-thalassemia minor, 13 intermedia, and 12 major (29.1 ± 6.4 years, 15 male).
FIELD STRENGTH/SEQUENCE: 3.0 T, 3D fast low angle shot sequence and T1-weighted turbo spin echo.
ASSESSMENT: Analyses on proton density fat fraction (PDFF) and R2* values in femur subregions (femoral head, greater trochanter, intertrochanteric, diaphysis, distal) and cortical thickness (CBI) of the subjects' left femur. Clinical data such as age, sex, body mass index (BMI), and disease severity were also included.
STATISTICAL TESTS: One-way analysis of variance (ANOVA), mixed ANOVA, Pearson correlation and multiple regression. P-values <0.05 were considered significant.
RESULTS: Bone marrow PDFF significantly varied between the femur subregions, F(2.89,89.63) = 44.185 and disease severity, F(1,3) = 12.357. A significant interaction between subject groups and femur subregions on bone marrow PDFF was observed, F(8.67,89.63) = 3.723. Notably, a moderate positive correlation was observed between PDFF and CBI (r = 0.33-0.45). Multiple regression models for both PDFF (R2 = 0.476, F(13,151) = 10.547) and CBI (R2 = 0.477, F(13,151) = 10.580) were significant. Significant predictors for PDFF were disease severity (βTMi = 0.36, βTMa = 0.17), CBI (β = 0.24), R2* (β = -0.32), and height (β = -0.29) while for CBI, the significant determinants were sex (β = -0.27), BMI (β = 0.55), disease severity (βTMi = 2.15), and PDFF (β = 0.25).
DATA CONCLUSION: This study revealed a positive correlation between bone marrow fat fraction and cortical bone thickness in β-thalassemia with varying disease severity, potentially indicating a complex interplay between bone health and marrow composition.
EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.
METHODS: A systematic review on the classification and assessment techniques to measure breast ptosis was carried out based on the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines. The risk of bias was assessed using the modified Newcastle-Ottawa scale for observational studies, whereas the Revised Cochrane risk-of-bias tool for randomized trials (RoB2) was used to evaluate randomized studies.
RESULTS: Of 2550 articles identified in the literature search, 16 observational and 2 randomized studies describing the classification and assessment techniques of breast ptosis were included in the review. A total of 2033 subjects were involved. Half of the total observational studies had a Newcastle-Ottawa scale score of 5 and above. In addition, all randomized trials recorded a low overall bias.
CONCLUSION: A total of 7 classifications and 4 measurement techniques for breast ptosis were identified. However, most studies did not demonstrate a clear derivation of sample size beside lacking robust statistical analysis. Hence, further studies that apply the latest technology to combine the strength of previous assessment techniques are needed to develop better classification system that is applicable to all affected women.
METHODS: Teaching and Learning (T&L) activities were conducted virtually on e-learning platforms. The students' experience and feedback were evaluated after 15 weeks.
RESULTS: We found that while students preferred face-to-face, physical teaching, they were able to adapt to the new norm of e-learning. More than 60% of the students agreed that pre-recorded lectures and viewing videos of practical sessions, plus answering short questions, were beneficial. Certain aspects, such as hands-on practical and clinical experience, could never be replaced. The e-learning and study-from-home environment accorded a lot of flexibility. However, students also found it challenging to focus because of distractions, lack of engagement and mental stress. Technical problems, such as poor Internet connectivity and limited data plans, also compounded the problem.
CONCLUSION: We expect e-learning to prevail in future. Hybrid learning strategies, which includes face-to-face classes and e-learning, will become common, at least in the medical physics programme of the University of Malaya even after the pandemic.
Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.
Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.
Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.