Displaying publications 261 - 280 of 337 in total

Abstract:
Sort:
  1. Shahul Hamid MY, Triwahyono S, Jalil AA, Che Jusoh NW, Izan SM, Tuan Abdullah TA
    Inorg Chem, 2018 May 21;57(10):5859-5869.
    PMID: 29746104 DOI: 10.1021/acs.inorgchem.8b00241
    Nickel (Ni), cobalt (Co), and zinc (Zn) loaded on fibrous silica KCC-1 was investigated for CO2 methanation reactions. Ni/KCC-1 exhibits the highest catalyst performance with a CH4 formation rate of 33.02 × 10-2 molCH4 molmetal-1 s-1, 1.77 times higher than that of Co/KCC-1 followed by Zn/KCC-1 and finally the parent KCC-1. A pyrrole adsorption FTIR study reveals shifting of perturbed N-H stretching decreasing slightly with the addition of metal oxide, suggesting that the basic sites of catalyst were inaccessible due to metal oxide deposition. The strengths of basicity were found to follow sthe equence KCC-1, Ni/KCC-1, Zn/KCC-1, and Co/KCC-1. The data were supported by N2 adsorption desorption analysis, where Co/KCC-1 displayed the greatest reduction in total surface area whereas Ni/KCC-1 displayed the least reduction. The elucidation of difference mechanism pathways has also been studied by in situ IR spectroscopy studies to determine the role of different metal oxides in CO2 methanation. It was discovered that Ni/KCC-1 and Co/KCC-1 follow a dissociative mechanism of CO2 methanation in which the CO2 molecule was dissociated on the surface of the metal oxide before migration onto the catalyst surface. This was confirmed by the evolution of a peak corresponding to carbonyl species (COads) on a metal oxide surface in FTIR spectra. Zn/KCC-1, on the other hand, showed no such peak, indicating associative methanation pathways where a hydrogen molecule interacts with an O atom in CO2 to form COads and OH. These results offers a better understanding for catalytic studies, particularly in the field of CO2 recycling.
    Matched MeSH terms: Silicon Dioxide
  2. Umar Kassim, Omar Mohd Rohim
    MyJurnal
    In accordance upon conservation efforts, this research emphasizes on prevention of
    environmental pollution and considers the elements of sustainable of infrastructure
    construction materials, which is interlocking pavement block. The development of this
    innovative product apply the concept of 3Rs and waste to wealth by using the
    agricultural waste product, coconut shell, where widely available with very minimum
    cost worldwide especially in tropical country such as India, Indonesia, Philippines,
    Thailand and Malaysia. The main objective of this research is to produce an
    environmental friendly product with a good quality, low cost and lightweight known as
    Green Interlocking Pavement (GIP Block). The chemical composition of coconut shell
    ash and ordinary Portland cement being identified and compared to know whether it
    is able to react as a good binder in the mixture or not. The quality of GIP Block
    considered is compressive strength, water absorption and bulk density. All the blocks
    were curing in seven and 28 days before implementing the entire test. The existing
    interlocking pavement used as bench mark and GIP Block 0% of proportion of coconut
    shell ash used as control variables. The specimen of the interlocking pavement
    prepared in this research is 10%, 20% and 30% proportion of coconut shell ash to
    partially replace the quantity of cement. The ratio of the interlocking pavement apply
    in this research is 1:2 which stand for one part cement and two part of sand. The
    findings withdrawn from this research are: first, the chemical characteristic of the
    coconut shell ash and cement. Second, the value of bulk density slightly reduces as the
    percentage of coconut shell ash increases. Third, the additional of coconut shell ash to
    partially replace the quantity of cement in the product reduce the compressive
    strength and increase the percentage of water absorption.
    Matched MeSH terms: Silicon Dioxide
  3. Dorairaj D, Ismail MR
    Front Physiol, 2017;8:491.
    PMID: 28747889 DOI: 10.3389/fphys.2017.00491
    Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD), a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ) a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX) was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.
    Matched MeSH terms: Silicon Dioxide
  4. Suhaily Amran, Ahmad Sayuti Zainal Abidin, Shoffian Amin Jaafar, Mohd Talib Latif, Abdul Mutalib Leman
    MyJurnal
    There are several alternative sampling and analytical methods available for the determination of respirable
    crystalline silica exposure among workers. The commonly used ones are, (1) NIOSH Manual Analytical Method
    No.7500(NMAM 7500) which is Silica, crystalline, by X-ray difractometer via filter deposition(NIOSH 2003), and
    (2) MDHS 101 (Methods for the Determination of Hazardous Substances (MDHS) Guidance No.101: Respirable
    crystalline silica in respirable airborne dust). The aim of this study is to compare applicability of respirable crystalline
    silica sampling and analysis between method MDHS 101 and NMAM 7500. Laboratory procedures will be performed
    strictly based on MDHS 101 and NMAM 7500. Both methods apply X-ray diffraction as analytical technique with
    many variations on sampling techniques and laboratory preparations. Quality assurance values such as detection
    limits, accuracy and precision are derived from both data and will be compared to determine which of the method
    establishes better quality assurance. The method which establishes better quality assurance will be recommend to be
    used in Malaysian respirable crystalline silica monitoring programme. The strength of this research lies on its potential
    to provide local capabilities in analysis of respirable crystalline silica in Malaysian setting.
    Matched MeSH terms: Silicon Dioxide
  5. Fatimah I, Prakoso NI, Sahroni I, Musawwa MM, Sim YL, Kooli F, et al.
    Heliyon, 2019 Nov;5(11):e02766.
    PMID: 31844705 DOI: 10.1016/j.heliyon.2019.e02766
    In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.
    Matched MeSH terms: Silicon Dioxide
  6. Mohamad Aini NA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N
    Int J Biol Macromol, 2020 Jul 01;154:1255-1264.
    PMID: 31765744 DOI: 10.1016/j.ijbiomac.2019.10.280
    Lignin from kenaf (Hibiscus cannabinus) core was investigated as an alternative filler for rubber. Three types of extraction methods were used to isolate lignin from kenaf, namely kraft, soda and organosolv process. The particle size, surface area, functionalities changes, molecular weight and thermal properties of the lignin were characterized. The results showed that Kraft lignin (KL) has the smallest particle size (40.41 μm) compared to soda lignin (SL) (63.85 μm) and organosolv lignin (OL) (66.85 μm). This is in good agreement with the BET surface area of 9.52 m2/g, 1.25 m2/g and 2.40 m2/g respectively. However, the smaller surface area of SL compared to OL is due to the smaller pore size and pore volume of SL. KL also showed high hydroxyl content with corresponding high thermal stability as confirmed by NMR and TGA. The thermal stability of the lignin correlates well with the molecular weight (MW). From the overall characteristics, it can be concluded that KL, SL and OL can be used as an alternative filler in rubber compounds to substitute common fillers like silica and carbon.
    Matched MeSH terms: Silicon Dioxide
  7. Hassan AM, Wan Ibrahim WA, Bakar MB, Sanagi MM, Sutirman ZA, Nodeh HR, et al.
    J Environ Manage, 2020 Jan 01;253:109658.
    PMID: 31666209 DOI: 10.1016/j.jenvman.2019.109658
    A new effective adsorbent, 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin (MSp@SiO2NH2) based silica-coated graphene oxide (GO), (GO@SiO2-MSp@SiO2NH2) was successfully synthesized and applied for the first time in the removal of hazardous Pb(II) ions from aqueous solution. The properties of the composite were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating-sample magnetometery (VSM). Evaluation of GO@SiO2-MSp@SiO2NH2 adsorption performance at optimum conditions revealed that the adsorbent has a maximum adsorption capacity of 323.5 mg/g for Pb(II) using 50-200 mg/L initial Pb(II) ions concentrations. Initial and final concentrations of Pb(II) ions in aqueous solution were analyzed using graphite furnace atomic absorption spectroscopy (GF-ASS). The adsorption behavior of Pb(II) ions onto GO@SiO2-MSp@SiO2NH2 was studied using Langmuir, Freundlich and Temkin isotherms models. The values of coefficient of determination showed that the adsorption best fitted the Langmuir model (R2 = 0.9994). Kinetic studies suggested that the adsorption of Pb(II) ion followed a pseudo-second-order rate model (R2 = 1.00) and thermodynamic studies revealed that the adsorption process is endothermic and spontaneous. The effect of co-existing ions on Pb(II) ion adsorption were also studied and found to have considerable effects only at higher matrix concentration. The adsorbent can be reused up to ten times and retain its good adsorption capacity. In addition, GO@SiO2-MSp@SiO2NH2 showed great potential for Pb(II)removal from industrial wastewater samples.
    Matched MeSH terms: Silicon Dioxide
  8. Tan hs, Mohd Radzi Abas, Norhayati Mohd Tahir
    Sains Malaysiana, 2016;45:365-371.
    A study has been carried out to characterize hydrocarbons emitted from the burning of three tropical wood species. The woods were burned to ember and smoke aerosols emitted were sampled using high volume sampler fitted with a pre-cleaned glass fibre filters. Hydrocarbons were extracted using ultrasonic agitation with dichloromethane-methanol (3:1 v/v) as solvent and the extracts obtained were then fractionated on silica-alumina column. Detection and quantification of aliphatic and polycyclic aromatic hydrocarbons (PAHs) compounds were carried out using GC-MS. The results indicated that the major aliphatic hydrocarbons characterized were straight chain n-alkanes in the range of C12-C35 with Cmax in the range of C27-C33. Rhizophora apiculata and Hevea brasiliensis wood smoke exhibited a weak odd to even carbon number predominance with carbon preference index (CPI) values greater than one whereas Melaleuca cajuputi wood smoke aerosols did not exhibit similar pattern with CPI obtained close to one. The results obtained also indicated that burning of these wood resulted in formation of PAHs compounds in their smoke aerosols with predominance of three to four rings PAHs over the two, five and lesser of six rings PAHs. PAH diagnostic ratios calculated except for Flan/(Flan+Py) and Indeno/(Indeno+BgP) were consistent with the ratios suggested for wood combustion source as reported in literatures. In the case of the latter, two diagnostic ratios, the values were generally lower than the range normally reported for wood combustion.
    Matched MeSH terms: Silicon Dioxide
  9. Zulfahmi Ali Rahman, Umar Hamzah, Noorulakma Ahmad
    Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and metasedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0%, 4%, 8%, 12% and 16% of dried weigth of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38% sand, 33% silt and 4% clay while metasedimentary soil consists of 4% sand, 43% silt dan 29% clay. The mean values of specific gravity for the granitic and metasedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while metasedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behaviouir was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, Cu showed a decreasing trend with the increase in hydrocarbon content.
    Matched MeSH terms: Silicon Dioxide
  10. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Silicon Dioxide
  11. Yap CC, Muhammad Yahaya, Muhamad Mat Salleh, Dee CF
    Sains Malaysiana, 2008;37:233-237.
    ZnO nanowires have been synthesized using a catalyst-free carbothermal reduction approach on SiO2-coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nanowires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nanowires was achieved by manipulating the reactants heating temperature from 700 to 1000 oC. It was found that the optimum temperature to synthesize high density and long ZnO nanowires was about 800 0C. The possible growth mechanism of ZnO nanowires is also proposed.
    Matched MeSH terms: Silicon Dioxide
  12. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
    Matched MeSH terms: Silicon Dioxide
  13. A Karim SS, Takamura Y, Tue PT, Tung NT, Kazmi J, Dee CF, et al.
    Materials (Basel), 2020 Mar 04;13(5).
    PMID: 32143385 DOI: 10.3390/ma13051136
    Highly ordered vertically grown zinc oxide nanorods (ZnO NRs) were synthesized on ZnO-coated SiO2/Si substrate using zinc acetylacetonate hydrate as a precursor via a simple hydrothermal method at 85 °C. We used 0.05 M of ZnO solution to facilitate the growth of ZnO NRs and the immersion time was varied from 0.5 to 4 h. The atomic force microscopy revealed the surface roughness of ZnO seed layer used to grow the ZnO NRs. The morphology of vertically grown ZnO NRs was observed by field emission scanning electron microscopy. X-ray diffraction examination and transmission electron microscopy confirmed that the structure of highly ordered ZnO NRs was crystalline with a strong (002) peak corresponded to ZnO hexagonal wurtzite structure. The growth of highly ordered ZnO NRs was favorable due to the continuous supply of Zn2+ ions and chelating agents properties obtained from the acetylacetonate-derived precursor during the synthesis. Two-point probe current-voltage measurement and UV-vis spectroscopy of the ZnO NRs indicated a resistivity and optical bandgap value of 0.44 Ω.cm and 3.35 eV, respectively. The photoluminescence spectrum showed a broad peak centered at 623 nm in the visible region corresponded to the oxygen vacancies from the ZnO NRs. This study demonstrates that acetylacetonate-derived precursors can be used for the production of ZnO NRs-based devices with a potential application in biosensors.
    Matched MeSH terms: Silicon Dioxide
  14. Hamzah N, Nagarajah M, Leo CP
    Water Sci Technol, 2018 Dec;78(12):2532-2541.
    PMID: 30767918 DOI: 10.2166/wst.2019.016
    Fat, oil and grease in wastewater generated from household kitchens, restaurants and food processing plants affect sewer systems, water resources and environment adversely. Hence, membrane distillation of saline and oily water was studied using a nearly superhydrophobic membrane developed in this work. Polyvinylidene fluoride (PVDF) membrane incorporated SiO2 nanoparticles was synthesized via phase inversion with dual baths and modified using hexadecyltrimethoxy silane. The volume ratio of silane to ethanol was varied between 1:200 to 1:25. The membrane characteristics were examined using a goniometer, a porometer, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The PVDF-SiO2 membrane modified using the volume ratio of 1:50 achieved the highest water contact angle of 141.6° and LEP of 2.642 bar. This membrane was further tested in membrane distillation to observe the permeate flux of distilled water, saline solution (1 M NaCl) as well as saline and oily solution (1 M NaCl; 1,000 ppm of palm oil). The modified PVDF/SiO2 showed high permeate flux which is nearly four times of the permeate flux of neat PVDF membrane, but still susceptible of salt and oil fouling as shown in SEM images.
    Matched MeSH terms: Silicon Dioxide
  15. Prathibha B, Reddy PP, Anjum MS, Monica M, Praveen BH
    Dent Res J (Isfahan), 2019 2 13;16(1):36-41.
    PMID: 30745917
    Background: The aim of this study is comparing the retention and caries preventive effect of the glass-ionomer fissure sealant and resin-based fissure sealant.

    Materials and Methods: A randomized-controlled split-mouth study was conducted to compare the retention and the caries preventive effect of light-cured resin-based sealant (3M ESPE) and glass ionomer sealant (Fuji VII). The sealants were applied to either the right or the left lower mandibular molars (7-9 yrs of age) in 120 school children, based on the randomization process. They were recalled for assessment of clinical retention at intervals of 3, 6, and 12 months. The caries-preventive effect between the two materials was tested statistically by the McNemar's test for matched pairs, and the differences observed with regard to the retention of the materials was tested by Chi-square tests. The level of significance was set to be at P < 0.05.

    Results: At the end of 12th month, sealant retention is found to be higher in the resin-based sealant group compared to the glass ionomer group. In the glass ionomer sealants placed, 101 (91%) were caries-free and 10 (9%) had caries. In the resin-based sealant, 105 (94.60%) had sound teeth and 6 (5.4%) had dental caries (P = 0.34).

    Conclusion: The glass ionomer sealant was less retentive when compared to resin sealants. The caries incidence between the glass ionomer and resin-based sealants was not statistically significant.

    Matched MeSH terms: Silicon Dioxide
  16. Norinsan Kamil Othman, Solhan Yahya, Denni Asra Awizar
    Sains Malaysiana, 2016;45:1253-1258.
    Anticorrosive properties of nano silicate from paddy husk in salt medium was investigated via weight loss method, Tafel
    polarization and impedance techniques. Prior to the corrosion test, the silica powder was obtained from burning the
    rice husk and extended with a chemical treatment process. The size of silica powder was characterized via zeta sizer and
    showed the amount of micro silica particle appear more than the nano size particle. Nano silica powder was produced
    from the refluxing process of micro silica to enhance the good properties of silica particle. The corrosion inhibition
    efficiency of nano silicate showed good inhibition with increased in inhibitor concentrations. Weight loss test exhibits
    high inhibition as more than 80% even, immersed in the corrosive medium until 14 days. The nano silicate inhibitor
    affected the anodic reaction as showed by Tafel plot analysis. Impedance results also correlated with other test as shown
    by the large size of Nyquist semicircle which represents as high resistance of charge transfer. The surface morphology
    of inhibited specimen showed a smooth surface after nano silicate inhibitor applied in the NaCl medium as observed
    through scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX).
    Matched MeSH terms: Silicon Dioxide
  17. Liew MS, Aswin M, Danyaro KU, Mohammed BS, Al-Yacouby AM
    Materials (Basel), 2020 May 26;13(11).
    PMID: 32466366 DOI: 10.3390/ma13112428
    In relation to the use of retrofit materials on damaged constructions, application on earthquake-resistant buildings, and for the strengthening and rehabilitation on weakened regions, there is a need for a more superior material than concrete. Application sites include beam-column joints, corbels, link-slabs, deep beams, support regions and dapped-end areas. Fiber reinforced engineered cementitious composites (FR-ECC) can address this issue, because FR-ECC is one of the composite materials that has high strength, ductility and durability. In order to develop FR-ECC, this study was done to investigate the effect of adding quartz powder on the compressive strength capacity and properties of FR-ECC through the use of polyvinyl alcohol (PVA) and steel fibers. The volume fraction of fiber was set to 0%-2%. To support the friendly environment, FR-ECC uses by-product materials such as fly ash and silica fume, with a cement content less than 600 kg/m3. In terms of the experimental investigation on FR-ECC, this work conducted the fresh property tests showing that PVA fibers have quite an influence on ECC workability, due to their hydrophilic behavior. By adjusting the superplasticizer (SP) content, the consistency and high workability of the ECC mixes have been achieved and maintained. The test results indicated that the PVA and steel fibers-based ECC mixes can be classified as self-compacting composites and high early compressive strength composites. Significantly, addition of quartz powder into the ECC mixes increased the compressive strength ratio of the ECC samples up to 1.0747. Furthermore, the steel fiber-based ECC samples exhibited greater compressive strength than the PVA fibers-based ECC samples with the strength ratio of 1.1760. Due to effect of the pozzolanic reaction, the fibers dispersion and orientation in the fresh ECC mixes, so that the cementitious matrices provided the high strength on the FR-ECC samples. During the compression loading, the bulging effect always occurred before the failures of the fibers-based ECC samples. No spalling occurred at the time of rupture and the collapse occurred slowly. Thus, FR-ECC has provided unique characteristics, which will reduce the high cost of maintenance.
    Matched MeSH terms: Silicon Dioxide
  18. Wong N, Lee CY
    J Econ Entomol, 2010 Apr;103(2):437-42.
    PMID: 20429460
    Moisture is an important physical factor for the survival of termites. The effects of different moisture levels (0, 5, 10, 15, 20, and 25%) of a sand substrate on the behavior of laboratory groups of Microcerotermes crassus Snyder and Coptotermes gestroi (Wasmann) (Blattodea: Termitidae: Rhinotermitidae) were evaluated. Moisture content of sand affected wood consumption and influenced termite distribution across a moisture gradient for M. crassus. Changing the moisture parameters affected the location preference of C. gestroi, but the effect on wood consumption was not significant. Nonetheless, M. crassus and C. gestroi showed a similar distribution pattern of association with particular moisture levels.
    Matched MeSH terms: Silicon Dioxide
  19. Rodriguez O, Stone W, Schemitsch EH, Zalzal P, Waldman S, Papini M, et al.
    Heliyon, 2017 Oct;3(10):e00420.
    PMID: 29034340 DOI: 10.1016/j.heliyon.2017.e00420
    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn(2+)), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro.
    Matched MeSH terms: Silicon Dioxide
  20. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
    Matched MeSH terms: Silicon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links