Displaying publications 2841 - 2860 of 9219 in total

Abstract:
Sort:
  1. Sharma JN, Kesavarao U
    Immunopharmacology, 1996 Jun;33(1-3):341-3.
    PMID: 8856181 DOI: 10.1016/0162-3109(96)00104-x
    This study examined the effects of streptozotocin-induced diabetes on blood pressure and cardiac tissue kallikrein levels in WKYR and SHR. Streptozotocin-induced diabetes caused significant (p < 0.001) increase in SBP and DBP in WKYR and SHR as compared with their respective controls. We also observed that the active cardiac tissue kallikrein levels reduced greatly (p < 0.001) in diabetic WKYR and SHR than the normal rats. These findings suggest for the first time that the cardiac tissue kallikrein formation may have a greater role in the regulation of blood pressure and cardiac function.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*; Hypertension/metabolism*; Kallikreins/metabolism*; Myocardium/metabolism*
  2. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Antineoplastic Agents/metabolism; Drug Carriers/metabolism; Neoplasms/metabolism; Nanoparticles/metabolism
  3. Zia S, Saleem M, Asif M, Hussain K, Butt BZ
    Inflammopharmacology, 2022 Dec;30(6):2211-2227.
    PMID: 36223063 DOI: 10.1007/s10787-022-01048-1
    Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p 
    Matched MeSH terms: Edema/metabolism; Inflammation/metabolism; Biomarkers/metabolism; Cytokines/metabolism
  4. Sambanthamurthi R, Sundram K, Tan Y
    Prog Lipid Res, 2000 Nov;39(6):507-58.
    PMID: 11106812
    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism; Fatty Acids/metabolism; Plant Oils/metabolism; Lipid Metabolism
  5. Donald JA, Hamid NKA, McLeod JL
    Gen Comp Endocrinol, 2017 04 01;244:201-208.
    PMID: 27102941 DOI: 10.1016/j.ygcen.2016.04.015
    Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.
    Matched MeSH terms: Hypothalamus/metabolism; Kidney/metabolism; Leptin/metabolism*; Ghrelin/metabolism*
  6. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
    Matched MeSH terms: Brain/metabolism*; Substance Withdrawal Syndrome/metabolism*; Biomarkers/metabolism; rab GTP-Binding Proteins/metabolism*
  7. Saoin S, Wisitponchai T, Intachai K, Chupradit K, Moonmuang S, Nangola S, et al.
    Asian Pac J Allergy Immunol, 2018 06;36(2):126-135.
    PMID: 28802032 DOI: 10.12932/AP-280217-0037
    BACKGROUND: AnkGAG1D4 is an artificial ankyrin repeat protein which recognizes the capsid protein (CA) of the human immunodeficiency virus type 1 (HIV-1) and exhibits the intracellular antiviral activity on the viral assembly process. Improving the binding affinity of AnkGAG1D4 would potentially enhance the AnkGAG1D4-mediated antiviral activity.

    OBJECTIVE: To augment the affinity of AnkGAG1D4 scaffold towards its CA target, through computational predictions and experimental designs.

    METHOD: Three dimensional structure of the binary complex formed by AnkGAG1D4 docked to the CA was used as a model for van der Waals (vdW) binding energy calculation. The results generated a simple guideline to select the amino acids for modifications. Following the predictions, modified AnkGAG1D4 proteins were produced and further evaluated for their CA-binding activity, using ELISA-modified method and bio-layer interferometry (BLI).

    RESULTS: Tyrosine at position 56 (Y56) in AnkGAG1D4 was experimentally identified as the most critical residue for CA binding. Rational substitutions of this residue diminished the binding affinity. However, vdW calculation preconized to substitute serine for tyrosine at position 45. Remarkably, the affinity for the viral CA was significantly enhanced in AnkGAG1D4-S45Y mutant, with no alteration of the target specificity.

    CONCLUSIONS: The S-to-Y mutation at position 45, based on the prediction of interacting amino acids and on vdW binding energy calculation, resulted in a significant enhancement of the affinity of AnkGAG1D4 ankyrin for its CA target. AnkGAG1D4-S45Y mutant represented the starting point for further construction of variants with even higher affinity towards the viral CA, and higher therapeutic potential in the future.

    Matched MeSH terms: Antiviral Agents/metabolism; Recombinant Fusion Proteins/metabolism; Ankyrins/metabolism; Capsid Proteins/metabolism
  8. Ahmed MA, Adeyemi KD, Jahromi MF, Jusoh S, Alimon AR, Samsudin AA
    Trop Anim Health Prod, 2017 Dec;49(8):1749-1756.
    PMID: 28849307 DOI: 10.1007/s11250-017-1388-3
    The effects of partial replacement of dietary protein by forages on rumen fermentation and microbiology in goats were examined. Four fistulated Boer bucks were used in a 4 × 4 Latin square design. The goats were fed 60% of urea-treated rice straw and 40% dietary treatment (Kleinhovia hospita (KH), Leucaena leucocephala (LL), mixture of K. hospita with L. leucocephala (KHLL)) and concentrate as the control. Rumen fluid from the animals was collected at 0, 2, 4, 6, and 12 h postprandial for analysis. The KHLL diet had a greater (P 
    Matched MeSH terms: Bacteria/metabolism; Dietary Proteins/metabolism; Propionates/metabolism; Plant Leaves/metabolism
  9. Mat Isa N, Abdul Mutalib NE, Alitheen NB, Song AA, Rahim RA
    J. Mol. Microbiol. Biotechnol., 2017;27(4):246-251.
    PMID: 29055951 DOI: 10.1159/000481257
    This study demonstrates that cell wall treatment of Lactococcus lactis harbouring the internal ribosome entry site-incorporated lactococcal bicistronic vector pNZ:VIG mediated the delivery of genes into an eukaryotic cell line, DF1 cells, through bactofection. Bactofection analysis showed that the pNZ:VIG plasmid in L. lactis can be transferred into DF1 cells and that both the VP2 and gfp genes cloned in the plasmid can be transcribed and translated. The protein band relative to the Mr of VP2 protein (49 kDa) was successfully detected via Western blot analysis, while green fluorescence was successfully detected using a fluorescence microscope. The intensity of the bands detected increased for samples treated with both 1.5% (w/v) glycine and 10 μg/mL of lysozyme when compared to L. lactis treated with glycine alone and without treatment. Cell wall treatment of L. lactis with a combination of both glycine and lysozyme was not only shown to mediate plasmid transfer to DF1 cells, but also to increase the plasmid transfer efficiency.
    Matched MeSH terms: Cell Wall/metabolism*; Glycine/metabolism; Muramidase/metabolism; Lactococcus lactis/metabolism*
  10. Hou Z, He P, Imam MU, Qi J, Tang S, Song C, et al.
    Oxid Med Cell Longev, 2017;2017:7205082.
    PMID: 29104731 DOI: 10.1155/2017/7205082
    Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss.
    Matched MeSH terms: Hippocampus/metabolism*; Memory Disorders/metabolism; Menopause/metabolism; Mild Cognitive Impairment/metabolism
  11. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Glucose/metabolism; Insulin/metabolism*; Islets of Langerhans/metabolism; Potassium Chloride/metabolism
  12. Shen G, Huang Y, Dong J, Wang X, Cheng KK, Feng J, et al.
    J Agric Food Chem, 2018 Jan 10;66(1):368-377.
    PMID: 29215281 DOI: 10.1021/acs.jafc.7b03182
    Taurine is indispensable in aquatic diets that are based solely on plant protein, and it promotes growth of many fish species. However, the physiological and metabolome effects of taurine on fish have not been well described. In this study, 1H NMR-based metabolomics approaches were applied to investigate the metabolite variations in Nile tilapia (Oreochromis nilotictus) muscle in order to visualize the metabolic trajectory and reveal the possible mechanisms of metabolic effects of dietary taurine supplementation on tilapia growth. After extraction using aqueous and organic solvents, 19 taurine-induced metabolic changes were evaluated in our study. The metabolic changes were characterized by differences in carbohydrate, amino acid, lipid, and nucleotide contents. The results indicate that taurine supplementation could significantly regulate the physiological state of fish and promote growth and development. These results provide a basis for understanding the mechanism of dietary taurine supplementation in fish feeding. 1H NMR spectroscopy, coupled with multivariate pattern recognition technologies, is an efficient and useful tool to map the fish metabolome and identify metabolic responses to different dietary nutrients in aquaculture.
    Matched MeSH terms: Taurine/metabolism*; Muscle, Skeletal/metabolism; Cichlids/metabolism*; Fish Proteins/metabolism
  13. Najafi P, Zulkifli I, Soleimani AF
    Poult Sci, 2018 Apr 01;97(4):1441-1447.
    PMID: 29462352 DOI: 10.3382/ps/pex364
    The aim of the current study was to elucidate whether inhibition of corticosterone (CORT) synthesis could modify stress response to feed deprivation and its possible interactions with feed restriction in the neonatal period in broiler chickens. Equal numbers of broiler chicks were subjected to either 60% feed restriction (60FR) or ad libitum (AL) on d 4, 5, and 6. On day 7, blood CORT, acute phase proteins (APP), interleukin-6 (IL-6) levels, and brain heat shock protein 70 (HSP70) expression were determined. On d 35, chickens in each early age feeding regimen were subjected to one of the following treatments: (i) ad libitum feeding (ALF), (ii) 24 h feed deprivation (SFR), or (iii) 24 h feed deprivation with intramuscular injection of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) at 100 mg/kg BW (SFR+DDT). The effect of SFR on CORT, APP, IL-6, and HSP 70 were determined on d 36. The results showed that subjecting chicks to 60FR significantly elevated CORT and brain HSP70 concentration compared to the AL group on d 7. The early feeding regimen had no significant effect on CORT, alpha-1 acid glycoprotein (AGP), ovotransferrin (OVT), ceruoplasmin (CP), IL-6, or brain HSP70 on d 36. The CORT, AGP, OVT, CP, IL-6, and brain HSP70 expression of SFR birds following 24 h of feed deprivation (d 36) were significantly higher than their ALF and SFR+DDT counterparts. Both ALF and SFR+DDT birds had similar values. Stress attributed to feed deprivation without concurrent increase in CORT had a negligible effect on serum levels of APP and IL-6 and brain HSP70 expression.
    Matched MeSH terms: Acute-Phase Proteins/metabolism*; Interleukin-6/metabolism*; HSP70 Heat-Shock Proteins/metabolism*; Avian Proteins/metabolism
  14. Hussain RM, Abdullah NF, Amom Z
    J Integr Med, 2016 Nov;14(6):456-464.
    PMID: 27854197 DOI: 10.1016/S2095-4964(16)60279-0
    OBJECTIVE: This study investigated the effects of allylpyrocatechol (APC), the major component in ethanolic extract of Piper betle, on key oxidative stress resistance enzymes important for the survival of Staphylococcus aureus, a major pathogen in the human host.

    METHODS: Effects of APC on expressions of genes encoding catalase (katA), superoxide dismutases (SODs), including sodA and sodM, and alkyl hydroperoxide reductase (ahpC) in S· aureus were quantitated by RT-qPCR in reference to gyrA and 16S rRNA. Corresponding activities of the enzymes were also investigated. The Livak analysis was performed for verification of gene-fold expression data. Effects of APC on intracellular and extracellular reactive oxygen species (ROS) levels were determined using the nitroblue tetrazolium (NBT) reduction assay.

    RESULTS: APC-treated S· aureus cells had higher sodA and sodM transcripts at 1.5-fold and 0.7-fold expressions respectively with corresponding increase in total SOD activity of 12.24 U/mL compared to untreated cells, 10.85 U/mL (P<0.05). Expression of ahpC was highest in APC-treated cells with 5.5-fold increased expression compared to untreated cells (P<0.05). Correspondingly, ahpC activity was higher in APC-treated cells at 0.672 (A310nm) compared to untreated cells which was 0.394 (A310nm). In contrast, katA expression was 1.48-fold and 0.33-fold lower respectively relative to gyrA and 16S rRNA. Further, APC-treated cells showed decreased catalase activity of 1.8 ×10-4 (U/L or μmol/(min·L)) compared to untreated cells, which was 4.8 ×10-4 U/L (P<0.05). Absorbance readings (A575nm) for the NBT reduction assay were 0.709 and 0.695 respectively for untreated and treated cells, which indicated the presence of ROS. APC-treated S· aureus cells had lower ROS levels both extracellularly and intracellularly, but larger amounts remained intracellularly compared to extracellular levels with absorbances of 0.457 and 0.137 respectively (P<0.05).

    CONCLUSION: APC induced expressions of both sodA and sodM, resulting in increased total SOD activity in S· aureus. Higher sodA expression indicated stress induced intracellularly involving O2- , presumably leading to higher intracellular pools of H2O2. A concommittant decrease in katA expression and catalase activity possibly induced ahpC expression, which was increased the highest in APC-treated cells. Our findings suggest that in the absence of catalase, cells are propelled to seek an alternate pathway involving ahpC to reduce stress invoked by O2- and H2O2. Although APC reduced levels of ROS, significant amounts eluded its antioxidative action and remained intracellularly, which adds to oxidative stress in treated cells.

    Matched MeSH terms: Bacterial Proteins/metabolism; Staphylococcus aureus/metabolism; Superoxide Dismutase/metabolism; Reactive Oxygen Species/metabolism
  15. Hudu SA, Niazlin MT, Nordin SA, Saeed MI, Tan SS, Sekawi Z
    Iran J Immunol, 2017 Dec;14(4):281-292.
    PMID: 29276181 DOI: IJIv14i4A3
    BACKGROUND: Hepatitis viruses are non-cytopathic viruses that lead to the infection and pathogenesis of liver diseases as a result of immunologically mediated events.

    OBJECTIVE: To investigate the expression of human inflammatory cytokines in chronic hepatitis B patients according to the severity of the infection.

    METHODS: We recruited a total of 120 patients, 40 of whom from cirrhotic, 40 non-cirrhotic, and 40 acute flare chronic hepatitis B and 40 healthy controls. For all groups total cellular RNA was extracted from whole blood samples, genomic DNA was eliminated, and cDNA was synthesized using the RT2 first strand kit, as instructed by the manufacturer. The real-time profiler PCR array was performed on a master cycler ep realplex and the data were analyzed using an online data analysis software.

    RESULTS: Non-cirrhotic chronic hepatitis B patients were found to significantly upregulate interleukin 10 receptors that regulate the balance between T helpers 1 and 2. On the other hand, patients with cirrhosis were found to have significant upregulated interleukin 3 gene expression.

    CONCLUSION: Our finding suggests that upregulation of anti-inflammatory and downregulation of pro-inflammatory cytokines may play a role in the progression of non-cirrhotic chronic hepatitis B patients to cirrhotic and acute flare. However, a multi-center study with a larger sample size is needed to confirm our findings.

    Matched MeSH terms: Complement C5/metabolism; Liver/metabolism*; Inflammation Mediators/metabolism; Chemokine CCL1/metabolism
  16. Janaydeh M, Ismail A, Omar H, Zulkifli SZ, Bejo MH, Aziz NAA
    Environ Monit Assess, 2017 Dec 27;190(1):47.
    PMID: 29282545 DOI: 10.1007/s10661-017-6416-2
    Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
    Matched MeSH terms: Cadmium/metabolism*; Environmental Pollutants/metabolism*; Lead/metabolism*; Crows/metabolism*
  17. Chitra P, Bakthavatsalam B, Palvannan T
    Clin Chim Acta, 2011 May 12;412(11-12):1151-4.
    PMID: 21300045 DOI: 10.1016/j.cca.2011.01.037
    Acquired immune deficiency syndrome (AIDS) defines the end stage of Human immunodeficiency viral (HIV) infection before the introduction of highly active antiretroviral therapy (HAART). This study was carried out to assess the serum β-2 microglobulin (B2M) as a marker for progression of HIV infected patients undergoing HAART.
    Matched MeSH terms: L-Lactate Dehydrogenase/metabolism; RNA, Viral/metabolism; HIV Infections/metabolism; Antigens, CD8/metabolism
  18. Kuppusamy UR, Indran M, Ahmad T, Wong SW, Tan SY, Mahmood AA
    Clin Chim Acta, 2005 Jan;351(1-2):197-201.
    PMID: 15563890 DOI: 10.1016/j.cccn.2004.09.014
    BACKGROUND: Comparisons of oxidative indices and total antioxidant status between end-stage renal disease (ESRD) patients with or without diabetes is scant, especially in the Asian population.
    METHOD: The assays were carried out according to known established protocols.
    RESULT: The present study showed that ESRD patients with or without non-insulin-dependent diabetes mellitus (NIDDM) did not have any significant differences in antioxidant enzyme activities, advanced glycated end products (AGE), advanced oxidized protein products (AOPP) and ferric reducing ability of plasma (FRAP), indicating that hyperglycemia does not exacerbate oxidative damage in ESRD. The regulation of catalase and glutathione peroxidase is also altered in ESRD. Elevated FRAP was observed in both ESRD groups (with and without NIDDM). The dialysis process did not alter the antioxidant enzyme activities but decreased AGEs and FRAP and increased AOPP levels.
    CONCLUSION: Oxidative stress is present in ESRD but this is not significantly exacerbated by hyperglycemia. The contribution of components in the pathology of renal failure towards oxidative stress exceeds that of hyperglycemia.
    Matched MeSH terms: Antioxidants/metabolism; Catalase/metabolism; Ferric Compounds/metabolism; Glutathione Peroxidase/metabolism
  19. Kumar P, Gaur P, Kumari R, Lal SK
    J Cell Biochem, 2019 04;120(4):6449-6458.
    PMID: 30335904 DOI: 10.1002/jcb.27935
    Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein-heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.
    Matched MeSH terms: Influenza, Human/metabolism; Neuraminidase/metabolism*; Viral Proteins/metabolism*; HSP90 Heat-Shock Proteins/metabolism*
  20. Al-Joudi FS, Iskandar ZA, Hasnan J, Rusli J, Kamal Y, Imran AK, et al.
    Singapore Med J, 2007 Jul;48(7):607-14.
    PMID: 17609820
    INTRODUCTION: Survivin is a 16.5-kDa intracellular protein that inhibits apoptosis and regulates cell division, and belongs to the inhibitors of apoptosis gene family. It appears to have an important role in regulating apoptosis at the cell cycle checkpoints. Survivin has been found to have a differential distribution in cancer compared to normal tissue, as it is over-expressed in malignant tumours.
    METHODS: In addition to the demographical analysis of the disease, data from 382 women with invasive ductal carcinoma of the breast were collected from three hospitals in Northeast Malaysia, and analysed for survivin expression by immunohistochemistry.
    RESULTS: Invasive ductal carcinoma of the breast was found to be the most prevalent breast cancer type. Survivin was detected in 260 (68.1 percent) study cases. In addition, significant correlations have been shown between survivin expression on one hand, and tumour size and lymph node involvement on the other hand (p-value is less than 0.05). However, no significant correlations were found with other clinicopathological factors, such as tumour histological grade, tumour side, oestrogen and progesterone receptors. Nuclear expression of survivin was detected in 16.5 percent of the study cases, cytoplasmic expression was detected in 24.1 percent, and 27.5 percent of the cases expressed survivin in both nuclear and cytoplasmic locations simultaneously. The subcellular localisation of survivin was significantly correlated (p is less than 0.001) with the lymph node involvement indicating its value in predicting the aggressiveness of tumour cells, since it increases the resistance to apoptosis and promotes cell proliferation.
    CONCLUSION: This is the fi rst known report on survivin expression in cancer in West Malaysia and Southeast Asia. It emphasises the importance of the detection of survivin in breast cancer to aid in diagnosis, confirm malignancy, and to assess the disease progress and response to therapy.
    Matched MeSH terms: Breast Neoplasms/metabolism*; Microtubule-Associated Proteins/metabolism*; Neoplasm Proteins/metabolism*; Carcinoma, Ductal, Breast/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links