Displaying publications 2961 - 2980 of 3312 in total

Abstract:
Sort:
  1. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Vero Cells
  2. Chua P, Lim WK
    Sci Rep, 2021 04 14;11(1):8096.
    PMID: 33854099 DOI: 10.1038/s41598-021-87431-4
    Stroke causes death and disability globally but no neuroprotectant is approved for post-stroke neuronal injury. Neuroprotective compounds can be identified using oxygen glucose deprivation (OGD) of neuronal cells as an in vitro stroke model. Nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells are frequently used. However, investigators often find their clonal variant undifferentiable and are uncertain of optimal culture conditions. Hence we studied 3 commonly used PC12 variants: PC12 Adh, PC12 from Riken Cell Bank (PC12 Riken) and Neuroscreen-1 (NS-1) cells. We found DMEM the optimal media for PC12 Riken and NS-1 cells. Using a novel serum-free media approach, we identified collagen IV as the preferred adhesive substrate for both cell lines. We found PC12 Adh cells cannot attach without serum and is unable to differentiate using NGF. NS-1 cells differentiated to a maximal 72.7 ± 5.2% %, with substantial basal differentiation. We optimised differentiated NS-1 cells for an in vitro stroke model using 3 h of OGD resulting in ~ 70% viable cells. We screened 5 reported neuroprotectants and provide the first report that serotonin is antiapoptotic in a stroke model and the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) is neuroprotective in PC12 cells. Thus we demonstrate the optimisation and validation for a PC12 cell-based in vitro stroke model.
    Matched MeSH terms: PC12 Cells
  3. Zhao Z, Malhotra A, Seng WY
    J Environ Pathol Toxicol Oncol, 2019;38(3):195-203.
    PMID: 31679307 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029549
    UNCI 19 expression has been reported to be significantly higher in hepatic cancer cells (HCC). However, the clinical significance of modulating UNC119 expression in HCC is not well understood. The study described here aimed to explore the potential of curcumin in modulation of UNC119 expression in HCC by assessment with quantitative real-time PCR, western blot, and immune-histochemical analyses in HCC cell lines and tissues. The biological functions of UNC119 in the proliferation, growth, and cycle of tumor cells were analyzed both in vitro and in vivo. UNC119 expression was upregulated in HCC cell lines and tissues as indicated by comparison with normal liver cells and tissues. Cellular function assays showed that higher levels of UNC119 not only promoted proliferation but also enhanced HCC cell migration and invasion. UNC119 promoted progression of the cell cycle and significantly promoted HCC cell growth through the Wnt/β-catenin signal pathway, and enhanced tumor migration and invasion by the TGF-β/EMT pathway. Curcumin efficiently inhibited HCC cell proliferation by blocking the Wnt/β-catenin pathway and inhabited migration and invasion by blocking the TGF-p/EMT signal pathway. Curcumin not only was beneficial for tumor remission but also contributed to the long-term survival of HCC-bearing mice. UNC119 was significantly upregulated and promoted cell growth in hepatic cancer cells and tissues by the Wnt/β-catenin signal pathway and migration by TGF-β/EMT signal pathway. Curcumin treatment inhibited cell proliferation, growth, migration, and invasion by inhibition of those pathways.
    Matched MeSH terms: Hep G2 Cells
  4. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T
    Mol Cell Biochem, 2013 Apr;376(1-2):11-20.
    PMID: 23238871 DOI: 10.1007/s11010-012-1543-0
    Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
    Matched MeSH terms: Cells, Cultured
  5. Zhang D, Gao C, Li R, Zhang L, Tian J
    Arch Pharm Res, 2017 May;40(5):579-591.
    PMID: 28211011 DOI: 10.1007/s12272-017-0899-9
    2α,3α,24-Thrihydroxyurs-12-en-28-oicacid (TEOA), a pentacyclic triterpenoid, isolated from the roots of Actinidia eriantha, exhibits significant cytotoxicity against SW620, BGC-823, HepG-2, A549 and PC-3 cancer cells. In this study, we investigated the underlying molecular mechanism of the anticancer activity of TEOA in SW620 cells. We demonstrated that TEOA induced apoptosis through cleavage of caspase-9 and PARP in SW620 cells. In addition, evidence of TEOA-mediated autophagy included the induction of autophagolysosomes and activation of autophagic markers LC-3B and p62. Further analysis illustrated that TEOA promoted the phosphorylation of PERK and elF2α, followed by up-regulation of the downstream protein CHOP, suggesting the involvement of PERK/eIF2α/CHOP pathway and ER stress in TEOA-induced autophagy in SW620 cells. Meanwhile, TEOA-mediated PINK1, Parkin, ubiquitin and p62 activation revealed that TEOA induced specific autophagy-mitophagy in SW620 cells. Additionally, an antioxidant NAC attenuated the TEOA-induced mitophagy, indicating that TEOA triggers mitophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism of TEOA in the colon cancer cell line SW620, thus providing a molecular basis for developing TEOA into an anti-tumor candidate.
    Matched MeSH terms: Tumor Cells, Cultured
  6. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Cells, Cultured
  7. Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299042 DOI: 10.3390/ijms22147424
    Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
    Matched MeSH terms: Tumor Cells, Cultured
  8. Khan MUA, Haider S, Raza MA, Shah SA, Razak SIA, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Dec 01;192:820-831.
    PMID: 34648803 DOI: 10.1016/j.ijbiomac.2021.10.033
    Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.
    Matched MeSH terms: Cells, Cultured
  9. Kamarulzaman FA, Shaari K, Ho AS, Lajis NH, Teo SH, Lee HB
    Chem Biodivers, 2011 Mar;8(3):494-502.
    PMID: 21404433 DOI: 10.1002/cbdv.201000341
    In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).
    Matched MeSH terms: HL-60 Cells
  10. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: PC12 Cells
  11. Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM
    Mol Pharm, 2021 09 06;18(9):3302-3325.
    PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248
    Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells
  12. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p 
    Matched MeSH terms: Cells, Cultured
  13. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, et al.
    Am J Chin Med, 2011;39(1):183-200.
    PMID: 21213408
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored.
    Matched MeSH terms: HeLa Cells
  14. McDonald EM, Duggal NK, Brault AC
    PLoS Negl Trop Dis, 2017 Oct;11(10):e0005990.
    PMID: 28985234 DOI: 10.1371/journal.pntd.0005990
    The Spondweni serogroup of viruses (Flaviviridae, Flavivirus) is comprised of Spondweni virus (SPONV) and Zika virus (ZIKV), which are mosquito-borne viruses capable of eliciting human disease. Numerous cases of ZIKV sexual transmission in humans have been documented following the emergence of the Asian genotype in the Americas. The African ZIKV genotype virus was previously implicated in the first reported case of ZIKV sexual transmission. Reports of SPONV infection in humans have been associated with non-specific febrile illness, but no association with sexual transmission has been reported. In order to assess the relative efficiency of sexual transmission of different ZIKV strains and the potential capacity of SPONV to be sexually transmitted, viral loads in the male reproductive tract and in seminal fluids were assessed in interferon α/β and -γ receptor deficient (AG129) mice. Male mice were inoculated subcutaneously with Asian genotype ZIKV strains PRVABC59 (Puerto Rico, 2015), FSS13025 (Cambodia, 2010), or P6-740 (Malaysia, 1966); African genotype ZIKV strain DakAr41524 (Senegal, 1984); or SPONV strain SAAr94 (South Africa, 1955). Infectious virus was detected in 60-72% of ejaculates collected from AG129 mice inoculated with ZIKV strains. In contrast, only 4% of ejaculates from SPONV-inoculated AG129 males were found to contain infectious virus, despite viral titers in the testes that were comparable to those of ZIKV-inoculated mice. Based on these results, future studies should be undertaken to assess the role of viral genetic determinants and host tropism that dictate the differential sexual transmission potential of ZIKV and SPONV.
    Matched MeSH terms: Vero Cells
  15. Hassan T, de Santi C, Mooney C, McElvaney NG, Greene CM
    Sci Rep, 2017 10 23;7(1):13803.
    PMID: 29062067 DOI: 10.1038/s41598-017-14310-2
    Alpha-1 antitrypsin (AAT) augmentation therapy involves infusion of plasma-purified AAT to AAT deficient individuals. Whether treatment affects microRNA expression has not been investigated. This study's objectives were to evaluate the effect of AAT augmentation therapy on altered miRNA expression in monocytes and investigate the mechanism. Monocytes were isolated from non-AAT deficient (MM) and AAT deficient (ZZ) individuals, and ZZs receiving AAT. mRNA (qRT-PCR, microarray), miRNA (miRNA profiling, qRT-PCR), and protein (western blotting) analyses were performed. Twenty one miRNAs were differentially expressed 3-fold between ZZs and MMs. miRNA validation studies demonstrated that in ZZ monocytes receiving AAT levels of miR-199a-5p, miR-598 and miR-320a, which are predicted to be regulated by NFκB, were restored to levels similar to MMs. Validated targets co-regulated by these miRNAs were reciprocally increased in ZZs receiving AAT in vivo and in vitro. Expression of these miRNAs could be increased in ZZ monocytes treated ex vivo with an NFκB agonist and decreased by NFκB inhibition. p50 and p65 mRNA and protein were significantly lower in ZZs receiving AAT than untreated ZZs. AAT augmentation therapy inhibits NFκB and decreases miR-199a-5p, miR-598 and miR-320a in ZZ monocytes. These NFκB-inhibitory properties may contribute to the anti-inflammatory effects of AAT augmentation therapy.
    Matched MeSH terms: Cells, Cultured
  16. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, et al.
    BMC Cancer, 2017 01 03;17(1):4.
    PMID: 28049506 DOI: 10.1186/s12885-016-3005-7
    BACKGROUND: Colorectal cancer (CRC) is the 3(rd) most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

    METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

    RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

    CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

    Matched MeSH terms: Tumor Cells, Cultured
  17. Omer FAA, Hashim NBM, Ibrahim MY, Dehghan F, Yahayu M, Karimian H, et al.
    Tumour Biol., 2017 Nov;39(11):1010428317731451.
    PMID: 29110583 DOI: 10.1177/1010428317731451
    Xanthones are phytochemical compounds found in a number of fruits and vegetables. Characteristically, they are noted to be made of diverse properties based on their biological, biochemical, and pharmacological actions. Accordingly, the apoptosis mechanisms induced by beta-mangostin, a xanthone compound isolated from Cratoxylum arborescens in the human promyelocytic leukemia cell line (HL60) in vitro, were examined in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was done to estimate the cytotoxicity effect of β-mangostin on the HL60 cell line. Acridine orange/propidium iodide and Hoechst 33342 dyes and Annexin V tests were conducted to detect the apoptosis features. Caspase-3 and caspase-9 activities; reactive oxygen species; real-time polymerase chain reaction for Bcl-2, Bax, caspase-3, and caspase-9 Hsp70 genes; and western blot for p53, cytochrome c, and pro- and cleavage-caspase-3 and caspase-9 were assessed to examine the apoptosis mechanism. Cell-cycle analysis conducted revealed that β-mangostin inhibited the growth of HL60 at 58 µM in 24 h. The administration of β-mangostin with HL60 caused cell morphological changes related to apoptosis which increased the number of early and late apoptotic cells. The β-mangostin-catalyzed apoptosis action through caspase-3, caspase-7, and caspase-9 activation overproduced reactive oxygen species which downregulated the expression of antiapoptotic genes Bcl-2 and HSP70. Conversely, the expression of the apoptotic genes Bax, caspase-3, and caspase-9 were upregulated. Meanwhile, at the protein level, β-mangostin activated the formation of cleaved caspase-3 and caspase-9 and also upregulated the p53. β-mangostin arrested the cell cycle at the G0/G1 phase. Overall, the results for β-mangostin showed an antiproliferative effect in HL60 via stopping the cell cycle at the G0/G1 phase and prompted the intrinsic apoptosis pathway.
    Matched MeSH terms: HL-60 Cells
  18. Kong WM, Chik Z, Mohamed Z, Alshawsh MA
    PMID: 29076424 DOI: 10.2174/1386207320666171026121820
    AIM AND OBJECTIVE: Mitragynine, a major active alkaloid of Mitragyna speciosa, acts as an agonist on µ-opioid receptors, producing effects similar to morphine and other opioids. It has been traditionally utilized to alleviate opiate withdrawal symptoms. Besides consideration about potency and selectivity, a good drug must possess a suitable pharmacokinetic profile, with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) profile, in order to have a high chance of success in clinical trials.

    MATERIAL AND METHOD: The purity of mitragynine in a Mitragyna speciosa alkaloid extract (MSAE) was determined using Ultra-Fast Liquid Chromatography (UFLC). In vitro high throughput ADMETox studies such as aqueous solubility, plasma protein binding, metabolic stability, permeability and cytotoxicity tests were carried out to analyze the physicochemical properties of MSAE and mitragynine. The UFLC quantification revealed that the purity of mitragynine in the MSAE was 40.9%.

    RESULTS: MSAE and mitragynine are highly soluble in aqueous solution at pH 4.0 but less soluble at pH 7.4. A parallel artificial membrane permeability assay demonstrated that it is extensively absorbed through the semi-permeable membrane at pH 7.4 but very poorly at pH 4.0. Both are relatively highly bound to plasma proteins (> 85 % bound) and are metabolically stable to liver microsomes (> 84 % remained unchanged). In comparison to MSAE, mitragynine showed higher cytotoxicity against WRL 68, HepG2 and Clone 9 hepatocytes after 72 h treatment.

    CONCLUSION: The obtained ADME and cytotoxicity data demonstrated that both MSAE and mitragynine have poor bioavailability and have the potential to be significantly cytotoxic.

    Matched MeSH terms: Hep G2 Cells
  19. Nasir SN, Abu N, Ab Mutalib NS, Ishak M, Sagap I, Mazlan L, et al.
    Clin Transl Oncol, 2018 Jun;20(6):775-784.
    PMID: 29098557 DOI: 10.1007/s12094-017-1788-x
    PURPOSE: Colorectal cancer (CRC) is one of the most widely diagnosed cancers in men and women worldwide. With the advancement of next-generation sequencing technologies, many studies have highlighted the involvement of long non-coding RNAs (lncRNAs) in cancer development. Growing evidence demonstrates that lncRNAs play crucial roles in regulating gene and protein expression and are involved in various cancers, including CRC. The field of lncRNAs is still relatively new and a lot of novel lncRNAs have been discovered, but their functional roles are yet to be elucidated. This study aims to characterize the expression and functional roles of a novel lncRNA in CRC.

    METHOD: Several methods were employed to assess the function of LOC285629 such as gene silencing, qPCR, proliferation assay, BrdU assay, transwell migration assay, ELISA and protein profiler.

    RESULTS: Via in silico analyses, we identified significant downregulation of LOC285629, a novel lncRNA, across CRC stages. LOC285629 expression was significantly downregulated in advanced stages (Stage III and IV) compared to Stage I (Kruskal-Wallis Test; p = 0.0093). Further in-house validation showed that the expression of LOC285629 was upregulated in colorectal cancer tissues and cell lines compared to the normal counterparts, but was downregulated in advanced stages. By targeting LOC285629, the viability, proliferative abilities, invasiveness and resistance of colorectal cancer cells towards 5-fluorouracil were reduced. It was also discovered that LOC285629 may regulate cancer progression by targeting several different proteins, namely survivin, BCL-xL, progranulin, PDGF-AA, enolase 2 and p70S6 K.

    CONCLUSION: Our findings suggest that LOC285629 may be further developed as a potential therapeutic target for CRC treatment.

    Matched MeSH terms: Tumor Cells, Cultured
  20. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
    Matched MeSH terms: Cells, Cultured
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links