Displaying publications 281 - 300 of 2201 in total

Abstract:
Sort:
  1. Abdul-Rahman T, Omran MO, Ekerin O, Ghosh S, Awuah WA
    Int J Surg, 2023 Aug 01;109(8):2542-2543.
    PMID: 37158146 DOI: 10.1097/JS9.0000000000000445
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  2. Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):549-559.
    PMID: 37847252 DOI: 10.1080/21691401.2023.2268167
    This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p 
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  3. Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117087.
    PMID: 37716390 DOI: 10.1016/j.envres.2023.117087
    Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Redhead AK, Azman NFIN, Nasaruddin AI, Vu T, Santos F, Malheiros R, et al.
    J Food Prot, 2022 Oct 01;85(10):1479-1487.
    PMID: 34762731 DOI: 10.4315/JFP-21-205
    ABSTRACT: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Sia T, Yong E
    BMJ Case Rep, 2024 Jan 16;17(1).
    PMID: 38232998 DOI: 10.1136/bcr-2023-258386
    A previously healthy woman in her mid-70s presented with right upper quadrant abdominal pain, fever, intermittent chills and malaise for 1 week. She was clinically septic with raised inflammatory markers. Her blood culture revealed Pasteurella multocida, which was susceptible to penicillin and amoxicillin-clavulanic acid. CT of liver revealed an abscess of 8.0×7.9×8.5 cm at the left lobe of the liver. However, the abscess was not amenable for surgical or radiological drainage. She was a farmer and had close contact with her pet cats. She was occasionally scratched by her cats when caring for them. The liver abscess resolved completely without drainage after prolonged antimicrobial therapy of 109 days. She commenced on 63 days of intravenous antimicrobials and 46 days of oral amoxicillin-clavulanic acid. This case illustrated P. multocida bacteraemia with a large liver abscess in an immunocompetent adult after non-bite exposure.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  6. Yap PSX, Chong CW, Ponnampalavanar S, Ramli R, Harun A, Tengku Jamaluddin TZM, et al.
    PeerJ, 2023;11:e16393.
    PMID: 38047021 DOI: 10.7717/peerj.16393
    BACKGROUND: The high burden of extended-spectrum beta-lactamase-producing (ESBL)-producing Enterobacterales worldwide, especially in the densely populated South East Asia poses a significant threat to the global transmission of antibiotic resistance. Molecular surveillance of ESBL-producing pathogens in this region is vital for understanding the local epidemiology, informing treatment choices, and addressing the regional and global implications of antibiotic resistance.

    METHODS: Therefore, an inventory surveillance of the ESBL-Escherichia coli (ESBL-EC) isolates responsible for infections in Malaysian hospitals was conducted. Additionally, the in vitro efficacy of flomoxef and other established antibiotics against ESBL-EC was evaluated.

    RESULTS: A total of 127 non-repetitive ESBL-EC strains isolated from clinical samples were collected during a multicentre study performed in five representative Malaysian hospitals. Of all the isolates, 33.9% were isolated from surgical site infections and 85.8% were hospital-acquired infections. High rates of resistance to cefotaxime (100%), cefepime (100%), aztreonam (100%) and trimethoprim-sulfamethoxazole (100%) were observed based on the broth microdilution test. Carbapenems remained the most effective antibiotics against the ESBL-EC, followed by flomoxef. Antibiotic resistance genes were identified by PCR. The blaCTX-M-1 was the most prevalent ESBL gene, with 28 isolates (22%) harbouring blaCTX-M-1 only, 27 isolates (21.3%) co-harbouring blaCTX-M-1 and blaTEM, and ten isolates (7.9%) co-harbouring blaCTX-M-1, blaTEM and blaSHV. A generalised linear model showed significant antibacterial activity of imipenem against different types of infection. Besides carbapenems, this study also demonstrated a satisfactory antibacterial activity of flomoxef (81.9%) on ESBL-EC, regardless of the types of ESBL genes.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Gunasekara YD, Kottawatta SA, Nisansala T, Wijewickrama IJB, Basnayake YI, Silva-Fletcher A, et al.
    Zoonoses Public Health, 2024 Feb;71(1):84-97.
    PMID: 37880923 DOI: 10.1111/zph.13087
    This study aimed to investigate and compare the proportion of AMR Escherichia coli (E. coli) between urban (Dompe in the Western province) and rural (Dambana in the Sabaragamuwa province) areas in Sri Lanka. The overall hypothesis of the study is that there is a difference in the proportion of AMR E. coli between the urban and the rural areas. Faecal samples were collected from healthy humans (n = 109), dairy animals (n = 103), poultry (n = 35), wild mammals (n = 81), wild birds (n = 76), soil (n = 80) and water (n = 80) from both areas. A total of 908 E. coli isolates were tested for susceptibility to 12 antimicrobials. Overall, E. coli isolated from urban area was significantly more likely to be resistant than those isolated from rural area. The human domain of the area had a significantly higher prevalence of AMR E. coli, but it was not significantly different in urban (98%) and rural (97%) areas. AMR E. coli isolated from dairy animals, wild animals and water was significantly higher in the urban area compared with the rural area. There was no significant difference in the proportion of multidrug resistance (MDR) E. coli isolated from humans, wild animals and water between the two study sites. Resistant isolates found from water and wild animals suggest contamination of the environment. A multi-sectorial One Health approach is urgently needed to control the spread of AMR and prevent the occurrences of AMR in Sri Lanka.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Chabattula SC, Gupta PK, Govarthanan K, Varadaraj S, Rayala SK, Chakraborty D, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):382-399.
    PMID: 37133677 DOI: 10.1007/s12010-023-04555-1
    Inorganic nanoparticles (NPs) have played an important role as nano-drug delivery systems during cancer therapy in recent years. These NPs can carry cancer therapeutic agents. Due to this, they are considered a promising ancillary to traditional cancer therapies. Among inorganic NPs, Zinc Oxide (ZnO) NPs have been extensively utilized in cellular imaging, gene/drug delivery, anti-microbial, and anti-cancerous applications. In this study, a rapid and cost-effective method was used to synthesize Nat-ZnO NPs using the floral extract of the Nyctanthes arbor-tristis (Nat) plant. Nat-ZnO NPs were physicochemically characterized and tested further on in vitro cancer models. The average hydrodynamic diameter (Zaverage) and the net surface charge of Nat-ZnO NPs were 372.5 ± 70.38 d.nm and -7.03 ± 0.55 mV, respectively. Nat-ZnO NPs exhibited a crystalline nature. HR-TEM analysis showed the triangular shape of NPs. Furthermore, Nat-ZnO NPs were also found to be biocompatible and hemocompatible when tested on mouse fibroblast cells and RBCs. Later, the anti-cancer activity of Nat-ZnO NPs was tested on lung and cervical cancer cells. These NPs displayed potent anti-cancer activity and induced programmed cell death in cancer cells.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  9. Tan YC, Lahiri C
    Front Immunol, 2022;13:900509.
    PMID: 35720310 DOI: 10.3389/fimmu.2022.900509
    In parallel to the uncontrolled use of antibiotics, the emergence of multidrug-resistant bacteria, like Acinetobacter baumannii, has posed a severe threat. A. baumannii predominates in the nosocomial setting due to its ability to persist in hospitals and survive antibiotic treatment, thereby eventually leading to an increasing prevalence and mortality due to its infection. With the increasing spectra of drug resistance and the incessant collapse of newly discovered antibiotics, new therapeutic countermeasures have been in high demand. Hence, recent research has shown favouritism towards the long-term solution of designing vaccines. Therefore, being a realistic alternative strategy to combat this pathogen, anti-A. Baumannii vaccines research has continued unearthing various antigens with variable results over the last decade. Again, other approaches, including pan-genomics, subtractive proteomics, and reverse vaccination strategies, have shown promise for identifying promiscuous core vaccine candidates that resulted in chimeric vaccine constructs. In addition, the integration of basic knowledge of the pathobiology of this drug-resistant bacteria has also facilitated the development of effective multiantigen vaccines. As opposed to the conventional trial-and-error approach, incorporating the in silico methods in recent studies, particularly network analysis, has manifested a great promise in unearthing novel vaccine candidates from the A. baumannii proteome. Some studies have used multiple A. baumannii data sources to build the co-functional networks and analyze them by k-shell decomposition. Additionally, Whole Genomic Protein Interactome (GPIN) analysis has utilized a rational approach for identifying essential proteins and presenting them as vaccines effective enough to combat the deadly pathogenic threats posed by A. baumannii. Others have identified multiple immune nodes using network-based centrality measurements for synergistic antigen combinations for different vaccination strategies. Protein-protein interactions have also been inferenced utilizing structural approaches, such as molecular docking and molecular dynamics simulation. Similar workflows and technologies were employed to unveil novel A. baumannii drug targets, with a similar trend in the increasing influx of in silico techniques. This review integrates the latest knowledge on the development of A. baumannii vaccines while highlighting the in silico methods as the future of such exploratory research. In parallel, we also briefly summarize recent advancements in A. baumannii drug target research.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Xie S, Hamid N, Zhang T, Zhang Z, Peng L
    J Hazard Mater, 2024 Jun 05;471:134324.
    PMID: 38640666 DOI: 10.1016/j.jhazmat.2024.134324
    In recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment. Combined pollutants, such as MPs and coexisting adsorbents, were widespread and could include antibiotics, heavy metals, resistance genes, and pathogens. Elevated levels of chemical pollutants on MPs could lead to the emergence of resistance genes under selective pressure, facilitated by bacterial communities and horizontal gene transfer (HGT). MPs acted as vectors, transferring pollutants into the food web. Various technologies, including membrane technology, coagulation, and advanced oxidation, have been trialed for pollutants removal, each with its benefits and drawbacks. Future research should focus on ecologically friendly treatment technologies for emerging contaminants in aquaculture wastewater. This review provided insights into understanding and addressing newly developing toxins, aiming to develop integrated systems for effective aquaculture wastewater treatment.
    Matched MeSH terms: Anti-Bacterial Agents*
  11. Huang L, Chen LN, Jia SW, Li M
    Trop Biomed, 2024 Dec 01;41(4):461-463.
    PMID: 39876503 DOI: 10.47665/tb.41.4.006
    Scrub typhus is an infectious disease caused by Orientia tsutsugamushi. It is transmitted through bite of chigger mite larvae and presents with symptoms such as fever, myalgia, headache, rash, and a characteristic eschar at the site of mite bites. This report details the case of a woman exhibiting acute febrile illness, bilateral pneumonia, and severe hypoxemia, prompting suspicion of scrub typhus due to the presence of a typical eschar on the pubic mound. The patient underwent combined therapy with azithromycin and doxycycline, alongside supplemental oxygen and prone positioning, with continuous monitoring facilitated by Electrical Impedance Tomography (EIT). Eventually the patient's symptoms improved. This case highlights the importance of timely identification of ARDS in scrub typhus patients and the utility of EIT in monitoring disease progression.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  12. Kwan Z, Wong SM, Robinson S, Tan LL, Looi LM, Ismail R
    Ann Acad Med Singap, 2015 Dec;44(12):577-9.
    PMID: 27090079
    Matched MeSH terms: Anti-Bacterial Agents/adverse effects*
  13. Ong KS, Aw YK, Gan HM, Yule CM, Lee SM
    Genome Announc, 2014;2(5).
    PMID: 25301661 DOI: 10.1128/genomeA.01032-14
    We report the draft genome sequences of two antimicrobial-producing isolates, Burkholderia sp. strains MSh1 and MSh2, which were isolated from tropical peat swamp forest soil. Putative genes related to different antimicrobial production have been annotated in both genome sequences.
    Matched MeSH terms: Anti-Bacterial Agents
  14. Aw YK, Ong KS, Yule CM, Gan HM, Lee SM
    Genome Announc, 2014;2(5).
    PMID: 25301658 DOI: 10.1128/genomeA.01024-14
    We report the draft genome sequence of Paenibacillus sp. strain MSt1, which has broad-range antimicrobial activity, isolated from tropical peat swamp soil. Genes involved in antimicrobial biosynthesis are found to be present in this genome.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G
    Eur J Med Chem, 2014 Jan;71:316-23.
    PMID: 24321835 DOI: 10.1016/j.ejmech.2013.10.056
    A new series of N-[5-(4-(alkyl/aryl)-3-nitro-phenyl)-[1,3,4-thiadiazol-2-yl]-2,2-dimethyl-propionamide 4 (a-l) and 6-(4-Methoxy-phenyl)-2-(4-alkyl/aryl)-3-nitro-phenyl)-Imidazo [2,1-b] [1,3,4] thiadiazole 6 (a-l) were synthesized starting from 5-(4-Fluoro-3-nitro-phenyl)-[1,3,4] thiadiazole-2-ylamine. The synthesized compounds were characterized by IR, NMR, mass spectral and elemental analysis. All the compounds were tested for antibacterial and antifungal activities. The antimicrobial activities of the compounds were assessed by well plate method (zone of inhibition). Compounds 4a, 4c and 6e, 6g displayed appreciable activity at the concentration 0.5-1.0 mg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*
  16. Ngeow YF, Leong ML, Wong YL, Wong GJ, Tan JL, Wee WY, et al.
    Genome Announc, 2013;1(4).
    PMID: 23990576 DOI: 10.1128/genomeA.00669-13
    Mycobacterium massiliense is a nontuberculous mycobacterium associated with human infections. We report here the draft genome sequence of M. massiliense strain M159, isolated from the bronchial aspirate of a patient who had a pulmonary infection. This strain showed genotypic and in vitro resistance to a number of tetracyclines and beta-lactam antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents
  17. Helaly SE, Kulik A, Zinecker H, Ramachandaran K, Tan GY, Imhoff JF, et al.
    J Nat Prod, 2012 Jun 22;75(6):1018-24.
    PMID: 22642587 DOI: 10.1021/np200580g
    A new 32-membered macrolactone antibiotic, named langkolide, was isolated from the mycelium of Streptomyces sp. Acta 3062. The langkolide structure was determined by HR-MS and 1D and 2D NMR as a 32-membered macrolactone connected from an overhanging polyketide tail to a naphthoquinone unit mediated by two carbohydrate moieties. The producing strain was isolated from a rhizosphere soil of Clitorea sp. collected at Burau Bay, Langkawi, Malaysia, and was characterized by its morphological and chemotaxonomic features in addition to its 16S rRNA gene sequence. It was identified as a member of the Streptomyces galbus clade. Langkolide exhibited various bioactivities including antimicrobial and antiproliferative activities. Furthermore, langkolide inhibited human recombinant phosphodiesterase 4 with an IC(50) value of 0.48 μM.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  18. Tan YN, Ayob MK, Wan Yaacob WA
    Food Chem, 2013 Jan 1;136(1):279-84.
    PMID: 23017424 DOI: 10.1016/j.foodchem.2012.08.012
    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry*
  19. Hossain MI, El-Harbawi M, Alitheen NB, Noaman YA, Lévêque JM, Yin CY
    Ecotoxicol Environ Saf, 2013 Jan;87:65-9.
    PMID: 23107478 DOI: 10.1016/j.ecoenv.2012.09.020
    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  20. Othman M, Genapathy S, Liew PS, Ch'ng QT, Loh HS, Khoo TJ, et al.
    Nat Prod Res, 2011 Nov;25(19):1857-64.
    PMID: 21838540 DOI: 10.1080/14786419.2010.537274
    The world's rainforests hold untold potential for drug discovery. Rainforest plants are thought to contain evolved defensive active metabolites of greater diversity compared to plants from temperate regions. In recent years, the interest and overall output from pharmaceutical companies on novel antibacterial agents has diminished at a time when there is a critical need for them to fight the threat of resistance. In this study, we have investigated the antimicrobial properties of 21 flowering plants from 16 different families against six bacterial strains consisting of two Gram negative and four Gram positive. Using the pour plate disc diffusion technique, almost all extracts from these plants were found to be active against some of the bacterial strains tested. The most interesting and active plants with broad spectrum activities include Duabanga grandiflora, Acalypha wilkesiana and Pseuduvaria macrophylla where the minimum inhibitory concentration, minimum bactericidal concentration and phytochemical analysis were carried out. This is the first report describing the antimicrobial and phytochemical properties of D. grandiflora and P. macrophylla. Our findings support the utilisation of higher plant species in the search for new antimicrobial molecules to combat new emerging infective diseases and the problem of drug resistant pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links