Displaying publications 281 - 300 of 379 in total

Abstract:
Sort:
  1. Suresh K, Smith HV, Tan TC
    Appl Environ Microbiol, 2005 Sep;71(9):5619-20.
    PMID: 16151162
    Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  2. Jawad AH, Hapiz A, Wu R, Abdulhameed AS, ALOthman ZA
    Int J Phytoremediation, 2024;26(10):1655-1666.
    PMID: 38711172 DOI: 10.1080/15226514.2024.2344178
    Herein, this work targets to employ the blended fruit wastes including rambutan (Nephelium lappaceum) peel and durian (Durio zibethinus) seed as a promising precursor to produce activated carbon (RPDSAC). The generation of RPDSAC was accomplished through a rapid and practical procedure (microwave-ZnCl2 activation). To evaluate the adsorptive capabilities of RPDSAC, its efficacy in eliminating methylene blue (MB), a simulated cationic dye, was measured. The Box-Behnken design (BBD) was utilized to optimize the crucial adsorption parameters, namely A: RPDSAC dose (0.02-01 g/100 mL), B: pH (4-10), and C: time (2-6 min). The BBD design determined that the highest level of MB removal (79.4%) was achieved with the condition dosage of RPDSAC at 0.1 g/100 mL, contact time (6 min), and pH (10). The adsorption isotherm data is consistent with the Freundlich concept, and the pseudo-second-order versions adequately describe the kinetic data. The monolayer adsorption capacity (qmax) of RPDSAC reached 120.4 mg/g at 25 °C. Various adsorption mechanisms are involved in the adsorption of MB dye onto the surface of RPDSAC, including π-π stacking, H-bonding, pore filling, and electrostatic forces. This study exhibits the potential of the RPDSAC as an adsorbent for removal of toxic cationic dye (MB) from contaminated wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Md Nasir NAN, Zakarya IA, Kamaruddin SA
    Environ Sci Pollut Res Int, 2024 Dec;31(58):66360-66371.
    PMID: 39625624 DOI: 10.1007/s11356-024-35598-4
    The potential of two different aquatic macrophytes, Azolla pinnata R.Br. and Lemna minor L., to treat livestock wastewater through phytoremediation was investigated. The physiological analysis includes the removal efficiency of manganese (Mn) from livestock wastewater by AAS. Morphological observation was performed by using a scanning electron microscope (SEM) and visual observation. RAPD analysis was applied to observe the DNA profile. It was observed that the removal efficiency of Mn was higher in L. minor with a 92% removal rate, while in A. pinnata RE, it was at a 77% rate. The higher removal rate of Mn by L. minor showed that plants had a significant impact on the removal of heavy metals, with a p ≤ 0.05. Retention time and the removal of heavy metals were found to be positively correlated. As early as 24 h after exposure to livestock wastewater (LW), the stomata on the leaves of A. pinnata and L. minor have both shrunk, and the root surfaces have shortened. According to the RAPD analysis, A. pinnata only shows an increase in band intensities and no polymorphism, whereas L. minor has 19% polymorphisms that indicate higher tolerance as hyperaccumulators. As a conclusion, L. minor showed no signs of necrosis and performed more efficiently as a hyperaccumulator in LW, with a higher removal efficiency.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  4. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Waste Disposal, Fluid/instrumentation; Waste Disposal, Fluid/methods*
  5. Alam Z, Muyibi SA, Jamal P
    PMID: 17365300
    Forty-six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant (STP), International Islamic University Malaysia (IIUM) wastewater treatment plant-1,-2 and -3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants, respectively. The results showed that higher microbial population (9-10 x 10(4) cfu/mL) was observed in the secondary clarifier of IWK treatment plant. Among the isolates, 23 isolates were gram-positive bacillus (GPB) and gram-positive cocci (GPC), 19 isolates were gram-negative bacillus (GNB) and gram-negative cocci (GNC), and the rest were undetermined. Gram-negative cocci (GNC) were not found in the isolates from IWK. A total of 15 bacterial strains were selected for effective and efficient sludge bioconversion. All the strains were tested against sludge (1% total suspended solids, TSS) to evaluate the biosolids production (TSS% content), chemical oxygen demand (COD) removal and filtration rate (filterability test). The strain S-1 (IWK1001) showed lower TSS content (0.8% TSS), maximum COD removal (84%) and increased filterability (1.1 min/10 mL of filtrate) of treated sludge followed by the strains S-11, S-14, S-2, S-15, S-13, S-7, S-8, S-4, S-3, S-6, S-12, S-16, S-17 and S-9. The pH values in the fermentation broth were affected by the bacterial cultures and recorded as well. Effective bioconversion was observed during the first three days of sludge treatment.
    Matched MeSH terms: Waste Disposal, Fluid
  6. Ali MF, Heng LY, Ratnam W, Nais J, Ripin R
    Bull Environ Contam Toxicol, 2004 Sep;73(3):535-42.
    PMID: 15386176
    Matched MeSH terms: Waste Disposal, Fluid
  7. Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N
    J Environ Manage, 2016 Jan 15;166:124-30.
    PMID: 26496842 DOI: 10.1016/j.jenvman.2015.10.020
    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.
    Matched MeSH terms: Waste Disposal, Fluid
  8. Jong VS, Tang FE
    Water Sci Technol, 2016;73(4):909-15.
    PMID: 26901735 DOI: 10.2166/wst.2015.563
    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.
    Matched MeSH terms: Waste Disposal, Fluid
  9. Rashid SS, Liu YQ
    Sci Total Environ, 2021 Feb 20;756:143849.
    PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849
    The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
    Matched MeSH terms: Waste Disposal, Fluid
  10. Lyn CW, Bashir MJ, Wong LY, Lim JW, Sethupathi S, Ng CA
    Chemosphere, 2020 Nov 25.
    PMID: 33276996 DOI: 10.1016/j.chemosphere.2020.129050
    Domestic wastewater has been generated massively along with rapid growth of population and economic. Biological treatment using sequencing batch reactor (SBR) augmented with palm oil fuel ash (POFA) was investigated for the first time. The performance of POFA in enhancing biological treatment of wastewater has not been tested. The porosity property of POFA can improve SBR efficiency by promoting growth of mixed liquor suspended solids (MLSS) and formation of larger flocs for settling and facilitating attachment of microorganisms and pollutants onto POFA surfaces. The properties of POFA were tested to identify morphological properties, particle size, surface area, chemical compositions. Four SBRs, namely SBR1, SBR2, SBR3 and SBR4 were provided with aeration rate of 1, 2, 3 and 4 L/min, respectively. Each reactor was augmented with different dosages of POFA. Optimum aeration rate and POFA concentration were identified by the performance of SBRs in removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and colour from domestic wastewater. The results showed the most efficient COD (97.8%), NH3-N (99.4%) and colour (98.8%) removals were achieved at optimum POFA concentration of 4 g/L in SBR and aeration rate of 1 L/min. The study also found that higher aeration rate would contribute to the smaller specific size of flocs and decrease the pollutant removal efficiency.
    Matched MeSH terms: Waste Disposal, Fluid
  11. Chatterjee A, Sicheritz-Pontén T, Yadav R, Kondabagil K
    Sci Rep, 2019 03 06;9(1):3690.
    PMID: 30842490 DOI: 10.1038/s41598-019-40171-y
    We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.
    Matched MeSH terms: Waste Disposal, Fluid
  12. Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, et al.
    Int J Phytoremediation, 2017 Aug 03;19(8):725-731.
    PMID: 28448169 DOI: 10.1080/15226514.2017.1284748
    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
    Matched MeSH terms: Waste Disposal, Fluid
  13. Zwain HM, Aziz HA, Dahlan I
    Environ Technol, 2018 Jun;39(12):1557-1565.
    PMID: 28514902 DOI: 10.1080/09593330.2017.1332692
    The performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (CODin) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH4) yield of 0.259 L CH4/g COD, and a stable effluent pH of 6.5 were achieved. Furthermore, the compartmental performance showed that most of the organic substrates were removed in the initial two compartments, resulting in low pH and alkalinity levels and a high concentration of volatile fatty acids. Overall, the results showed that the MAI-BR successfully treated RPME, and the performance was affected by the variation of HRT more than the CODin.
    Matched MeSH terms: Waste Disposal, Fluid
  14. Al-Raad AA, Hanafiah MM
    J Environ Manage, 2021 Dec 15;300:113696.
    PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696
    Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
    Matched MeSH terms: Waste Disposal, Fluid
  15. Mohammad Ilias MK, Hossain MS, Ngteni R, Al-Gheethi A, Ahmad H, Omar FM, et al.
    PMID: 34886153 DOI: 10.3390/ijerph182312427
    The present study was conducted to determine the potential of utilizing the FeSO4·7H2O waste from the titanium manufacturing industry as an effective coagulant for treating industrial effluent. In this study, the secondary rubber processing effluent (SRPE) was treated using ferrous sulfate (FeSO4·7H2O) waste from the titanium oxide manufacturing industry. The FeSO4·7H2O waste coagulation efficiency was evaluated on the elimination of ammoniacal nitrogen (NH3-N) and chemical oxygen demand (COD) from SRPE. The central composite design (CCD) of experiments was employed to design the coagulation experiments with varying coagulation time, coagulant doses, and temperature. The coagulation experiments were optimized on the optimal elimination of NH3-N and COD using response surface methodology (RSM). Results showed that coagulant doses and temperature significantly influenced NH3-N and COD elimination from SRPE. The highest NH3-N and COD removal obtained were 98.19% and 93.86%, respectively, at the optimized coagulation experimental conditions of coagulation time 70 min, coagulant doses 900 mg/L, and temperature 62 °C. The residual NH3-N and COD in treated SPRE were found below the specified industrial effluent discharge limits set by DoE, Malaysia. Additionally, the sludge generated after coagulation of SRPE contains essential plant nutrients. The present study's finding showed that FeSO4·7H2O waste generated as an industrial byproduct in a titanium oxide manufacturing industry could be utilized as an eco-friendly coagulant in treating industrial effluent.
    Matched MeSH terms: Waste Disposal, Fluid
  16. Amosa MK, Jami MS, Alkhatib MF, Majozi T
    Environ Sci Pollut Res Int, 2016 Nov;23(22):22554-22567.
    PMID: 27557958
    This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m(-3) of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m(-3)) for such wastewater reclamation.
    Matched MeSH terms: Waste Disposal, Fluid
  17. Njoya M, Basitere M, Ntwampe SKO, Lim JW
    PMID: 33145736 DOI: 10.1007/s11356-020-11397-5
    In this study, the treatment of poultry slaughterhouse wastewater (PSW) was evaluated using two new down-flow high-rate anaerobic bioreactor systems (HRABS), including the down-flow expanded granular bed reactor (DEGBR) and the static granular bed reactor (SGBR). These two bioreactors have demonstrated a good performance for the treatment of PSW with removal percentages of the biochemical oxygen demand (BOD5), the chemical oxygen demand (COD), and fats, oil, and grease (FOG) exceeding 95% during peak performance days. This performance of down-flow HRABS appears as a breakthrough in the field of anaerobic treatment of medium to high-strength wastewater because down-flow anaerobic bioreactors have been neglected for the high-rate anaerobic treatment of such wastewater due to the success of up-flow anaerobic reactors such as the UASB and the EGSB as a result of the granulation of a consortium of anaerobic bacteria required for efficient anaerobic digestion and biogas production. Hence, to promote the recourse to such technologies and provide further explanation to their performance, this study approached the kinetic analysis of these two down-flow HRABS using the modified Stover-Kincannon and the Grau second-order multi-component substrate models. From a comparison between the two models investigated, the modified Stover-Kincannon model provided the best prediction for the concentration of the substrate in the effluent from the two HRABS. This analysis led to the determination of the kinetic parameters of the two models that can be used for the design of the two HRABS and the prediction of the performance of the SGBR and DEGBR. The kinetic parameters determined using the Modified Stover-Kincannon were Umax = 40.5 gCOD/L.day and KB = 47.3 gCOD/L.day for the DEGBR and Umax = 33.6 gCOD/L.day and KB = 44.9 gCOD/L.day for the SGBR; while, using the Grau second-order model, the kinetic models determined were a = 0.058 and b = 1.112 for the DEGBR and a = 0.135 and b = 1.33 for the SGBR.
    Matched MeSH terms: Waste Disposal, Fluid
  18. Me MFH, Ang WL, Othman AR, Mohammad AW, Nasharuddin AAA, Aris AM, et al.
    Environ Monit Assess, 2024 Mar 14;196(4):366.
    PMID: 38483639 DOI: 10.1007/s10661-024-12526-0
    Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater. Lab-scale operation shows the biosensor was successfully enriched with (1) local University Kebangsaan Malaysia's, microbial community strain collection and (2) local municipal wastewater microflora, operated for more than 50 days with a stable yet responsive carbon consumption rate (CCR) signal. Meanwhile, two independent biosensors were also enriched and operated in Indah Water Research Centre's crude sewage holding tank, showing a stable response to the wastewater. Next, a pilot scale setup was constructed to test the enriched biosensors for the spiked-pollutant test. The biosensors showed a proportional CCR response (pollutant presence detected) towards several organic compounds in the sewage, including ethanol, chicken blood, and dilution of tested sewage but less to curry powder, methanol, and isopropanol. Conversely, there was no significant response (pollutant presence not detected) towards hexane, Congo red, engine oil, and paint, which may be due to their non-biodegradability and/or insoluble nature. Additionally, the biosensors were exposed to air for 6 h to assess their robustness towards aerobic shock with a positive result. Overall, the study suggested that the biosensor could be a powerful monitoring tool, given its responsiveness towards organic compounds in sewage under normal conditions.
    Matched MeSH terms: Waste Disposal, Fluid
  19. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
    Matched MeSH terms: Waste Disposal, Fluid
  20. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N', Hasan HA, et al.
    Int J Environ Res Public Health, 2020 Dec 12;17(24).
    PMID: 33322826 DOI: 10.3390/ijerph17249312
    The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
    Matched MeSH terms: Waste Disposal, Fluid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links