Displaying publications 3101 - 3120 of 6727 in total

Abstract:
Sort:
  1. Mustafa NWNA, Ahmad R, Ahmad Khushaini MA, Kamar Affendi NH, Ab Ghani SM, Tan SK, et al.
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):405-419.
    PMID: 38040671 DOI: 10.1021/acsbiomaterials.3c01551
    This study assessed the corrosion resistance, intracutaneous reactivity, acute systemic toxicity, and in situ tissue effect of the implantation of porous NiTi fabricated by metal injection molding in animal models. For the intracutaneous reactivity study, five intracutaneous injections were administered per site with and without the tested extract in polar and nonpolar solutions. The extract was also delivered via intravenous and intraperitoneal routes for acute systemic toxicity. TiAl6 V4 (control) and porous NiTi were implanted in rabbit femora for a period of 13 weeks to evaluate the in situ tissue response. Corrosion was evaluated through open and cyclic polarization in PBS, while biocompatibility was investigated by assessing the general conditions, skin irritation score (edema and erythema), and histopathology. No active dissolution or hysteresis loop was observed in the corrosion study. None of the animals exhibited death, moribundity, impending death, severe pain, self-mutilation, or overgrooming. No edema was observed at injection sites. Only the positive control showed an erythematous reaction at 24, 48, and 72 h observations (p < 0.001). Porous NiTi showed a low in situ biological response for inflammation, neovascularization, and fibrosis in comparison to the control implant (p = 0.247, 0.005, and 0.011, respectively). Porous NiTi also demonstrated high pitting corrosion resistance while causing no acute hypersensitivity or acute systemic toxicity. The study concludes that porous NiTi implants were unlikely to cause local sensitization, acute systemic toxicity, or chronic inflammatory reactions in an animal model. Porous NiTi also exhibited osseointegration equivalent to Ti6AI4 V of known biocompatibility.
  2. Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, et al.
    Bioresour Technol, 2024 Feb;394:130222.
    PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222
    Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
  3. Shoaib Ahmad Shah S, Altaf Nazir M, Mahmood A, Sohail M, Ur Rehman A, Khurram Tufail M, et al.
    Chem Rec, 2024 Jan;24(1):e202300141.
    PMID: 37724006 DOI: 10.1002/tcr.202300141
    Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.
  4. Mohd Suan MA, Ng YZ, Henry GF, Md Said R, Kollanthavelu S, Mustapha MI, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3183-3186.
    PMID: 37774070 DOI: 10.31557/APJCP.2023.24.9.3183
    BACKGROUND: Colorectal neoplasia is a multistep process that can lead to the development of colorectal cancer. Colonoscopy is the gold standard for diagnosis and screening of colorectal cancer, but its uptake is often hindered by unpleasant experiences and logistic obstacles. Therefore, non-invasive biomarker tests such as the M2-pyruvate kinase (M2PK) test have been explored as a potential screening tool.

    OBJECTIVE: This study aims to evaluate the efficacy of the M2PK Quick Stool Test (ScheBo®) in detecting colorectal adenoma and adenocarcinoma in high-risk Malaysian populations using colonoscopy as the comparison.

    METHODS: A prospective, cross-sectional, multicenter study was conducted from December 2017 to December 2019 in four hospitals in Malaysia. Participants were eligible if they met any of the following criteria: personal or family history of colorectal polyps or cancer, inherited syndromes, altered bowel habits, rectal bleeding, unintended weight loss, loss of appetite, abdominal pain or cramps, or unexplained iron deficiency, or an Asia-Pacific Colorectal Screening score of 4-7. Participants provided a stool sample that was tested for M2PK using the M2PK Quick Test. Participants then underwent a colonoscopy, and any lesions found were biopsied and sent for histopathological examination.

    RESULTS: A total of 562 participants were included in the study, of whom 89 had a positive M2PK test. Presence of adenoma and/or dysplastic lesions were confirmed in 14.4% and adenocarcinoma in 3.0% of the participants. The M2PK Quick Stool Test showed a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 58.8%, 85.5%, 11.2% and 98.5%, respectively in detecting colorectal adenocarcinoma. For detection of colorectal adenoma, this test yielded a sensitivity, specificity, PPV and NPV of 27.3%, 86.3%, 27.0% and 86.5%, respectively.

    CONCLUSIONS: The M2PK Quick Stool Test showed a moderate accuracy in detecting colorectal adenocarcinoma and adenomas in the studied population.

  5. Khan KM, Nadeem MF, Mannan A, Chohan TA, Islam M, Ansari SA, et al.
    Chem Biodivers, 2024 Jan;21(1):e202301375.
    PMID: 38031244 DOI: 10.1002/cbdv.202301375
    Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
  6. Ghanim AAJ, Waqas S, Zeeshan MH, Khan JA, Ghalib SA, Irfan M, et al.
    ACS Omega, 2024 Feb 06;9(5):5265-5272.
    PMID: 38343923 DOI: 10.1021/acsomega.3c05712
    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that may contaminate various water sources and pose serious dangers to human health and the environment. Due to their capacity for size-based separation, nanofiltration membranes have become efficient instruments for PAH removal. However, issues such as membrane fouling and ineffective rejection still exist. To improve PAH rejection while reducing fouling problems, this work created a new gradient cross-linking poly(vinylpyrrolidone) (PVP) nanofiltration membrane. The gradient cross-linking technique enhanced the rejection performance and antifouling characteristics of the membrane. The results demonstrated that the highest membrane flow was achieved at a 0.15% SDS-PVP membrane. There is a trade-off between membrane flux and salt rejection since salt rejection increases with SDS owing to the growth of big pores. The membrane flux was reduced for the 0.25% SDS-PVP membrane owing to poor SDS dispersion. The prepared membrane showed enhanced removal efficiencies for the removal of the PAH compounds. The PVP membrane has the potential to be used in several water treatment applications, improving water quality, and preserving the environment.
  7. Dong WS, Ismailluddin A, Yun LS, Ariffin EH, Saengsupavanich C, Abdul Maulud KN, et al.
    Heliyon, 2024 Feb 29;10(4):e25609.
    PMID: 38375273 DOI: 10.1016/j.heliyon.2024.e25609
    Climate change alters the climate condition and ocean environment, leading to accelerated coastal erosion and a shift in the coastline shape. From previous studies, Southeast Asia's coastal region is suffering from severe coastal erosion. It is most sensitive and vulnerable to climate change, has broad and densely populated coastlines, and is under ecological pressure. Efforts to systematically review these studies are still insufficient despite many studies on the climate change linked to coastal erosion, the correlation between coastal erosion and coastal communities, and the adaptative measures to address these issues and their effectiveness in Southeast Asia. Therefore, by analyzing the existing literature, the purpose of this review was to bridge the knowledge gap and identify the link between climate change and coastal erosion in Southeast Asia in terms of sea-level rise, storm surge, and monsoon patterns. The RepOrting standards for Systematic Evidence Syntheses (ROSES) guided the study protocol, including articles from the Scopus and Dimension databases. There were five main themes considered: 1) climate change impact, 2) contributing factors to coastal erosion, 3) coastal erosion impact on coastal communities, 4) adaptation measure and 5) effectiveness of adaptation measure using thematical analysis. Subsequently, nine sub-themes were produced from the themes. Generally, in Southeast Asia, coastal erosion was reflected by the rising sea level. Throughout reviewing past literature, an interesting result was explored. Storm surges also had the potential to affect coastal erosion due to alterations of the atmospheric system and seasonal monsoon as the result of climate change. Meanwhile, an assessment of current erosion control strategies in relation to the relative hydrodynamic trend was required to avoid the failure of defence structures and the resulting danger to coastal communities. Systematically reviewing the existing literature was critical, hence it could significantly contribute to the body of knowledge. It provides valuable information for interested parties, such as authorities, the public, researchers, and environmentalists, while comprehending existing adaptation practices. This kind of review could strategize adaptation and natural resource management in line with coastal communities' needs, abilities, and capabilities in response to environmental and other change forms.
  8. Sukindar NA, Md Yasir ASH, Azhar MD, Md Azhar MA, Abd Halim NFH, Sulaiman MH, et al.
    Heliyon, 2024 Feb 29;10(4):e25508.
    PMID: 38384568 DOI: 10.1016/j.heliyon.2024.e25508
    Fused deposition modeling (FDM) is currently used in several fields, such as architecture, manufacturing, and medical applications. FDM was initially developed to produce and create prototypes, but the expense appears excessive for producing final products. Nevertheless, in this day and age, engineers have developed a low-cost 3D printer. One of the major issues with low-cost 3D printers is the low dimensional accuracy and high tolerances of the printed products. Herein, different printing parameters, i.e., layer thickness, printing speed, and raster angle, need to be investigated to enhance the surface roughness of the parts produced using FDM. Thus, the present study focuses on investigating the performance of the surface finish produced by FDM by manipulating different parameters such as layer thickness, printing speed, and raster angle. Taguchi's method, based on the L9 array for experimental design, was employed to elucidate the response variables. The sample model was developed following ISO standards, utilizing polylactic acid (PLA)-aluminum as the filament material. The analysis of variance results indicated that the layer thickness and raster angle significantly affect the surface roughness of the printed parts, with statistical P-values of 0.016 and 0.039, respectively. This enables an easy selection of the optimal printing parameters to achieve the desired surface roughness. The dimensional accuracy of the fabricated part was also evaluated. Thirteen dimensions of the part features were analyzed, and the results showed that the FDM machine exhibited good accuracy for most of the shapes, with a deviation below 5%.
  9. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
  10. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
  11. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al.
    Cancers (Basel), 2021 Feb 07;13(4).
    PMID: 33562376 DOI: 10.3390/cancers13040670
    The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
  12. Naqvi AA, Hassali MA, Rizvi M, Zehra A, Nisa ZU, Islam MA, et al.
    Front Pharmacol, 2020;11:1039.
    PMID: 32765264 DOI: 10.3389/fphar.2020.01039
    Objective: The aim was to validate the Urdu version of General Medication Adherence Scale (GMAS) in patients with rheumatoid arthritis disease.

    Methods: A 2-month (March-April 2019) cross-sectional study was conducted in randomly selected out-patients with rheumatoid arthritis. The sample size was calculated using item-subject ratio of 1:20. The scale was evaluated for factorial, concrete, concurrent, and known group validities. Concrete validity was established by correlating scores of EQ-5D quality of life scale and GMAS adherence score. Concurrent validity was established by correlating the GMAS adherence score with pill count. Analyses for sensitivity were also conducted. Cut-off value was determined through receiver operator curve (ROC), and test-retest method was used to analyze internal consistency and reliability. Data were analyzed through IBM SPSS, IBM AMOS, and MedCalc software. The Urdu version of EQ-5D quality of life questionnaire was used with permission from developers (#ID20884). The study was approved by an ethics committee (#NOV:15).

    Results: A total of 351 responses were analyzed. The response rate was 98%. Reliability was in acceptable range, i.e., Cronbach α = 0.797. Factorial validity was established by calculation of satisfactory fit indices. Correlation coefficients for concrete and concurrent validities were ρ = 0.687, p < 0.01 and ρ = 0.779, p < 0.01, respectively. Known group validity was established as significant association of adherence score with insurance and illness duration (p < 0.05) that were reported. Sensitivity of the scale was 94%. Most patients had high adherence (N = 159, 45.3%).

    Conclusion: The Urdu version of GMAS demonstrated adequate internal consistency and was validated. These results indicate that it is an appropriate tool to measure medication adherence in Pakistani patients with rheumatoid arthritis.

  13. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
  14. Azzeri A, Mohamed NA, Wan Rosli SH, Abdul Samat MN, Rashid ZZ, Mohamad Jamali MA, et al.
    PLoS One, 2024;19(3):e0291892.
    PMID: 38483913 DOI: 10.1371/journal.pone.0291892
    Genomic surveillance is crucial for tracking emergence and spread of novel variants of pathogens, such as SARS-CoV-2, to inform public health interventions and to enforce control measures. However, in some settings especially in low- and middle- income counties, where sequencing platforms are limited, only certain patients get to be selected for sequencing surveillance. Here, we show that patients with multiple comorbidities potentially harbour SARS-CoV-2 with higher mutation rates and thus deserve more attention for genomic surveillance. The relationship between the patient comorbidities, and type of amino acid mutations was assessed. Correlation analysis showed that there was a significant tendency for mutations to occur within the ORF1a region for patients with higher number of comorbidities. Frequency analysis of the amino acid substitution within ORF1a showed that nsp3 P822L of the PLpro protease was one of the highest occurring mutations. Using molecular dynamics, we simulated that the P822L mutation in PLpro represents a system with lower Root Mean Square Deviation (RMSD) fluctuations, and consistent Radius of gyration (Rg), Solvent Accessible Surface Area (SASA) values-indicate a much stabler protein than the wildtype. The outcome of this study will help determine the relationship between the clinical status of a patient and the mutations of the infecting SARS-CoV-2 virus.
  15. Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, et al.
    PMID: 24864161 DOI: 10.1155/2014/979730
    Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS). Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB) in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer's disease, Parkinson's disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.
  16. Rasool M, Iqbal J, Malik A, Ramzan HS, Qureshi MS, Asif M, et al.
    PMID: 24795768 DOI: 10.1155/2014/641597
    Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. A time-dependent study was designed to evaluate the ability of silymarin (SLN) and glycyrrhizin (GLN) in different dosage regimens to lessen oxidative stress in the rats with hepatic injury caused by the hepatotoxin carbon tetrachloride. Wistar male albino rats (n = 60) were randomly assigned to six groups. Group A served as a positive control while groups B, C, D, E, and F received a dose of CCl4 (50% solution of CCl4 in liquid paraffin, 2 mL/kg, intraperitoneally) twice a week to induce hepatic injury. Additionally, the animals received SLN and GLN in different doses for a period of six weeks. CCl4 was found to induce hepatic injury by significantly increasing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and thiobarbituric acid reactive substances while decreasing total protein and the activities of reduced glutathione, superoxide dismutase, and catalase. Treatment with various doses of SLN and GLN significantly reduced ALT, AST, ALP, and TBARS levels and increased GSH, SOD, and CAT levels. Our findings indicated that SLN and GLN have hepatoprotective effects against oxidative stress of the liver.
  17. Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, et al.
    Chem Cent J, 2016;10:5.
    PMID: 26848308 DOI: 10.1186/s13065-016-0149-0
    Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane.
  18. Kasri MA, Mohd Halizan MZ, Harun I, Bahrudin FI, Daud N, Aizamddin MF, et al.
    RSC Adv, 2024 May 10;14(22):15515-15541.
    PMID: 38741977 DOI: 10.1039/d4ra00972j
    The paramount importance of lithium (Li) nowadays and the mounting volume of untreated spent LIB have imposed pressure on innovators to tackle the near-term issue of Li resource depletion through recycling. The trajectory of research dedicated to recycling has skyrocketed in this decade, reflecting the global commitment to addressing the issues surrounding Li resources. Although metallurgical methods, such as pyro- and hydrometallurgy, are presently prevalent in Li recycling, they exhibit unsustainable operational characteristics including elevated temperatures, the utilization of substantial quantities of expensive chemicals, and the generation of emissions containing toxic gases such as Cl2, SO2, and NOx. Therefore, the alternative electrochemical method has gained growing attention, as it involves a more straightforward operation leveraging ion-selective features and employing water as the main reagent, which is seen as more environmentally benign. Despite this, intensive efforts are still required to advance the electrochemical method toward commercialisation. This review highlights the key points in the electrochemical method that demand attention, including the feasibility of a large-scale setup, consideration of the substantial volume of electrolyte consumption, the design of membranes with the desired features, a suitable layout of the membrane, and the absence of techno-economic assessments for the electrochemical method. The perspectives presented herein provide a crucial understanding of the challenges of advancing the technological readiness level of the electrochemical method.
  19. Khan FM, Abbasi MA, Rehman AU, Siddiqui SZ, Sadiq Butt AR, Raza H, et al.
    RSC Adv, 2024 May 15;14(23):16546-16559.
    PMID: 38774615 DOI: 10.1039/d4ra01063a
    By using a convergent methodology, a unique series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole-triazole core was synthesized and the structures of these hybrid molecules, 9a-k, were corroborated through spectral analyses. The in vitro studies of these multi-functional molecules demonstrated their potent mushroom tyrosinase inhibition relative to the standard used. The kinetics mechanism was exposed by lineweaver-burk plots which revealed that, 9c, inhibited mushroom tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.016 μM. The computational study was also consistent with the experimental results and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to mushroom tyrosinase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for the diseases associated with the over-expression of this enzyme.
  20. Madenci E, Özkılıç YO, Bahrami A, Aksoylu C, Asyraf MRM, Hakeem IY, et al.
    Heliyon, 2024 Apr 30;10(8):e28388.
    PMID: 38638992 DOI: 10.1016/j.heliyon.2024.e28388
    Carbon nanotube (CNT) reinforcement can lead to a new way to enhance the properties of composites by transforming the reinforcement phases into nanoscale fillers. In this study, the buckling response of functionally graded CNT-reinforced composite (FG-CNTRC) sandwich beams was investigated experimentally and analytically. The top and bottom plates of the sandwich beams were composed of carbon fiber laminated composite layers and hard core. The hard core was made of a pultruded glass fiber-reinforced polymer (GFRP) profile. The layers of FG-CNTRC surfaces were reinforced with different proportions of CNT. The reference sample was made of only a pultruded GFRP profile. In the study, the reference sample and four samples with CNT were tested under compression. The largest buckling load difference between the reference sample and the sample with CNT was 37.7%. The difference between the analytical calculation results and experimental results was obtained with an approximation of 0.49%-4.92%. Finally, the buckling, debonding, interlaminar cracks, and fiber breakage were observed in the samples.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links