Displaying publications 301 - 320 of 334 in total

Abstract:
Sort:
  1. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
    Matched MeSH terms: Plant Oils/chemistry*
  2. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Plant Oils/chemistry
  3. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K
    Biotechnol Lett, 2005 Sep;27(18):1405-10.
    PMID: 16215858
    Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
    Matched MeSH terms: Plant Oils/chemistry
  4. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    Eur J Nutr, 2013 Mar;52(2):443-56.
    PMID: 22527284 DOI: 10.1007/s00394-012-0346-0
    BACKGROUND: Water-soluble phenolics from the oil palm possess significant biological properties.

    PURPOSE: In this study, we aimed to discover the role of oil palm phenolics (OPP) in influencing the gene expression changes caused by an atherogenic diet in mice.

    METHODS: We fed mice with either a low-fat normal diet (14.6 % kcal/kcal fat) with distilled water, or a high-fat atherogenic diet (40.5 % kcal/kcal fat) containing cholesterol. The latter group was given either distilled water or OPP. We harvested major organs such as livers, spleens and hearts for microarray gene expression profiling analysis. We determined how OPP changed the gene expression profiles caused by the atherogenic diet. In addition to gene expression studies, we carried out physiological observations, blood hematology as well as clinical biochemistry, cytokine profiling and antioxidant assays on their blood sera.

    RESULTS: Using Illumina microarrays, we found that the atherogenic diet caused oxidative stress, inflammation and increased turnover of metabolites and cells in the liver, spleen and heart. In contrast, OPP showed signs of attenuating these effects. The extract increased unfolded protein response in the liver, attenuated antigen presentation and processing in the spleen and up-regulated antioxidant genes in the heart. Real-time quantitative reverse transcription-polymerase chain reaction validated the microarray gene expression fold changes observed. Serum cytokine profiling showed that OPP attenuated inflammation by modulating the Th1/Th2 axis toward the latter. OPP also increased serum antioxidant activity to normal levels.

    CONCLUSION: This study suggests that OPP may possibly attenuate atherosclerosis and other forms of cardiovascular disease.

    Matched MeSH terms: Plant Oils/chemistry
  5. Taib IS, Budin SB, Ghazali AR, Jayusman PA, Mohamed J
    Exp Anim, 2014;63(4):383-93.
    PMID: 25030881
    Exposure to organophosphate insecticides such as fenitrothion (FNT) in agriculture and public health has been reported to affect sperm quality. Antioxidants may have a potential to reduce spermatotoxic effects induced by organophosphate. The present study was carried out to evaluate the effects of palm oil tocotrienol-rich fraction (TRF) in reducing the detrimental effects occurring in spermatozoa of FNT-treated rats. Adult male Sprague-Dawley rats were divided into four equal groups: a control group and groups of rats treated orally with palm oil TRF (200 mg/kg), FNT (20 mg/kg) and palm oil TRF (200 mg/kg) combined with FNT (20 mg/kg). The sperm characteristics, DNA damage, superoxide dismutase (SOD) activity, and levels of reduced glutathione (GSH), malondialdehyde (MDA), and protein carbonyl (PC) were evaluated. Supplementation with TRF attenuated the detrimental effects of FNT by significantly increasing the sperm counts, motility, and viability and decreased the abnormal sperm morphology. The SOD activity and GSH level were significantly increased, whereas the MDA and PC levels were significantly decreased in the TRF+FNT group compared with the rats receiving FNT alone. TRF significantly decreased the DNA damage in the sperm of FNT-treated rats. A significant correlation between abnormal sperm morphology and DNA damage was found in all groups. TRF showed the potential to reduce the detrimental effects occurring in spermatozoa of FNT-treated rats.
    Matched MeSH terms: Plant Oils/chemistry*
  6. Azad AK, Doolaanea AA, Al-Mahmood SMA, Kennedy JF, Chatterjee B, Bera H
    Int J Biol Macromol, 2021 Aug 31;185:861-875.
    PMID: 34237363 DOI: 10.1016/j.ijbiomac.2021.07.019
    Peppermint oil (PO) is the most prominent oil using in pharmaceutical formulations with its significant therapeutic value. In this sense, this oil is attracting considerable attention from the scientific community due to its traditional therapeutic claim, biological and pharmacological potential in recent research. An organic solvent-free and environment-friendly electrohydrodynamic assisted (EHDA) technique was employed to prepared PO-loaded alginate microbeads. The current study deals with the development, optimization, in vitro characterization, in vivo gastrointestinal tract drug distribution and ex-vivo mucoadhesive properties, antioxidant, and anti-inflammatory effects of PO-loaded alginate microbeads. The optimization results indicated the voltage and flow rate have a significant influence on microbeads size and sphericity factor and encapsulation efficiency. All these optimized microbeads showed a better drug release profile in simulated intestinal fluid (pH 6.8) at 2 h. However, a minor release was found in acidic media (pH 1.2) at 2 h. The optimized formulation showed excellent mucoadhesive properties in ex-vivo and good swelling characterization in intestine media. The microbeads were found to be well distributed in various parts of the intestine in in vivo study. PO-loaded alginate microbeads similarly showed potential antioxidant effects with drug release. The formulation exhibited possible improvement of irritable bowel syndrome (IBS) in MO-induced rats. It significantly suppressed proinflammatory cytokines, i.e., interleukin- IL-1β, and upregulated anti-inflammatory cytokine expression, i.e., IL-10. It would be a promising approach for targeted drug release after oral administration and could be considered an anti-inflammatory therapeutic strategy for treating IBS.
    Matched MeSH terms: Plant Oils/chemistry
  7. Gunasekaran R, Shaker MR, Mohd-Zin SW, Abdullah A, Ahmad-Annuar A, Abdul-Aziz NM
    BMC Complement Altern Med, 2017 Jan 28;17(1):79.
    PMID: 28129764 DOI: 10.1186/s12906-017-1600-z
    Coconut oil is commonly used as herbal medicine worldwide. There is limited information regarding its effects on the developing embryo and infant growth.
    Matched MeSH terms: Plant Oils/chemistry
  8. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2018 Sep;83(9):2288-2294.
    PMID: 30074623 DOI: 10.1111/1750-3841.14291
    Kenaf seed oil is prone to undergo oxidation due to its high content of unsaturated fatty acids, thus microencapsulation stands as an alternative to protect kenaf seed oil from the adverse environment. This study primarily aimed to evaluate the oxidative stability of microencapsulated refined kenaf seed oil (MRKSO) by the use of gum arabic, β-cyclodextrin, and sodium caseinate as the wall materials by spray drying. Bulk refined kenaf seed oil (BRKSO) and MRKSO were kept at 65 °C for 24 days to evaluate its oxidative stability, changes of tocopherol and tocotrienol contents, phytosterol content, and fatty acid profile. The results showed that the peroxide value, p-Anisidine value, and total oxidation value of BRKSO were significantly higher than the MRKSO at day 24. The total tocopherol and tocotrienol contents were reduced 66.1% and 56.8% in BRKSO and MRKSO, respectively, upon the storage. There was a reduction of 71.7% and 23.5% of phytosterol content in BRKSO and MRKSO, respectively, upon the storage. The degradation rate of polyunsaturated fatty acids in BRKSO was higher than that of MRKSO. This study showed that the current microencapsulation technique is a feasible way to retard the oxidation of kenaf seed oil.

    PRACTICAL APPLICATION: There is increasing research on the functional properties of crude kenaf seed oil, but the crude kenaf seed oil is not edible. This study offered in developing of microencapsulated refined kenaf seed oil by spray drying, which is suitable for food application. The microencapsulation of refined kenaf seed oil with healthier wall materials is beneficial in developing a diversity of functional food products and supplements.

    Matched MeSH terms: Plant Oils/chemistry*
  9. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Plant Oils/chemistry
  10. Swamy MK, Sinniah UR
    Molecules, 2015 May 12;20(5):8521-47.
    PMID: 25985355 DOI: 10.3390/molecules20058521
    Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
    Matched MeSH terms: Plant Oils/chemistry
  11. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Plant Oils/chemistry*
  12. Noor NM, Khan AA, Hasham R, Talib A, Sarmidi MR, Aziz R, et al.
    IET Nanobiotechnol, 2016 Aug;10(4):195-9.
    PMID: 27463789 DOI: 10.1049/iet-nbt.2015.0041
    Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.
    Matched MeSH terms: Plant Oils/chemistry
  13. Mahdi ES, Noor AM, Sakeena MH, Abdullah GZ, Abdulkarim MF, Sattar MA
    Int J Nanomedicine, 2011;6:2499-512.
    PMID: 22072884 DOI: 10.2147/IJN.S22337
    BACKGROUND: Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging.

    METHODS: Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method.

    RESULTS: Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively.

    CONCLUSION: The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.

    Matched MeSH terms: Plant Oils/chemistry*
  14. Leong XF, Najib MN, Das S, Mustafa MR, Jaarin K
    Tohoku J Exp Med, 2009 Sep;219(1):71-8.
    PMID: 19713687
    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response.
    Matched MeSH terms: Plant Oils/chemistry*
  15. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Am J Clin Nutr, 2011 Dec;94(6):1451-7.
    PMID: 22030224 DOI: 10.3945/ajcn.111.020107
    BACKGROUND: Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear.

    OBJECTIVE: We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults.

    DESIGN: A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets.

    RESULTS: No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a).

    CONCLUSION: Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

    Matched MeSH terms: Plant Oils/chemistry
  16. Norazlina M, Ima-Nirwana S, Abul Gapor MT, Abdul Kadir Khalid B
    Asia Pac J Clin Nutr, 2002;11(3):194-9.
    PMID: 12230232
    In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.
    Matched MeSH terms: Plant Oils/chemistry
  17. Ebrahimi M, Rajion MA, Goh YM
    Nutrients, 2014 Sep;6(9):3913-28.
    PMID: 25255382 DOI: 10.3390/nu6093913
    Alteration of the lipid content and fatty acid (FA) composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST) muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA) and α-linolenic acid (LNA) for 100 days. Inclusion of flaxseed oil increased (p < 0.05) the α-linolenic acid (C18:3n-3) concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05) decreased the arachidonic acid (C20:4n-6) and conjugated linolenic acid (CLA) c-9 t-11 content in the ST muscle. There was a significant (p < 0.05) upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD) gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression.
    Matched MeSH terms: Plant Oils/chemistry
  18. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Plant Oils/chemistry
  19. Maroufyan E, Kasim A, Ebrahimi M, Loh TC, Hair-Bejo M, Soleimani AF
    Poult Sci, 2012 Sep;91(9):2173-82.
    PMID: 22912451 DOI: 10.3382/ps.2012-02317
    This study was carried out to investigate the modulatory effects of dietary methionine and n-6/n-3 polyunsaturated fatty acids (PUFA) ratio on immune response and performance of infectious bursal disease (IBD)-challenged broiler chickens. In total, 350 one-day-old male broiler chicks were assigned to 1 of the 6 dietary treatment groups in a 3 × 2 factorial arrangement. There were 3 n-6/n-3 PUFA ratios (45, 5.5, and 1.5) and 2 levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that birds fed with dietary n-6/n-3 PUFA ratio of 5.5 had higher BW, lower feed intake, and superior FCR than other groups. However, the highest antibody response was observed in birds with dietary n-6/n-3 PUFA ratio of 1.5. Lowering n-6/n-3 PUFA ratio reduced bursa lesion score equally in birds fed with n-6/n-3 PUFA ratio of 5.5 and 1.5. Supplementation of methionine by twice the recommendation also improved FCR and reduced feed intake and bursa lesion score. However, in this study, the optimum performance (as measured by BW, feed intake, and FCR) did not coincide with the optimum immune response (as measured by antibody titer). It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent but nonlinear manner. Therefore, it can be suggested that a balance of moderate level of dietary n-6/n-3 PUFA ratio (5.5) and methionine level (twice recommendation) might enhance immune response together with performance in IBD-challenged broiler chickens.
    Matched MeSH terms: Plant Oils/chemistry
  20. Karupaiah T, Tan CH, Chinna K, Sundram K
    J Am Coll Nutr, 2011 Dec;30(6):511-21.
    PMID: 22331686
    OBJECTIVE: Saturated fats increase total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) and are linked to coronary artery disease risk. The effect of variance in chain length of saturated fatty acids (SFA) on coronary artery disease in human postprandial lipemia is not well elucidated.

    METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.

    RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).

    CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.

    Matched MeSH terms: Plant Oils/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links