Displaying publications 301 - 320 of 322 in total

Abstract:
Sort:
  1. Martins J, Brijesh S
    J Ethnopharmacol, 2019 Oct 07.
    PMID: 31600560 DOI: 10.1016/j.jep.2019.112280
    ETHNOPHARMACOLOGICAL RELEVANCE: Erythrina variegata, commonly referred to as 'tiger's claw' or 'Indian coral tree' and 'Parijata' in Sanskrit, belongs to the Fabaceae family. It is a plant native to the coast of India, China, Malaysia, East Africa, Northern Australia and distributed in tropical and subtropical regions worldwide. In traditional medicine, 'Paribhadra' an Indian preparation, makes use of the leaves and bark of E. variegata to destroy pathogenic parasites and relieve joint pains. E. variegata is known to exhibit anxiolytic and anti-convulsant activities. Folkore medicine also suggests that E. variegata barks act on the central nervous system. However, there is a lack of data demonstrating this. The anti-depressant activity of E. variegata bark has not been reported in literature.

    AIM OF THE STUDY: Our study focuses on previously unreported anti-depressant activity of E. variegata bark ethanolic extract (EBE) and determination of its mechanism of action possibly through regulation of monoamine oxidase activity in mouse brain homogenates.

    MATERIALS AND METHODS: EBE was characterized using standard protocols for phytochemical analysis, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis. Anti-depressant activity of EBE (50, 100, 200 and 500 mg/kg) was evaluated in Swiss white albino mice using acute and chronic forced swim test (FST) models. Furthermore, the potential use of the extract as an adjunct to selective serotonin reuptake inhibitor (SSRI), escitalopram, was evaluated using the chronic unpredictable mild stress test model wherein inhibitory effects on monoamine oxidase (MAO) A and B were assessed by spectrophotometric-chemical analysis in mouse whole brain homogenates.

    RESULTS: The extract showed significant reduction in immobility time periods in both acute (200 mg/kg) and chronic (100, 200 and 500 mg/kg) FST models. When used as an adjunct with escitalopram (15 mg/kg), the extract (100, 200 and 500 mg/kg) showed significantly greater inhibition of MAO-A and B activities when compared to escitalopram alone (30 mg/kg). Phytochemical analysis of EBE revealed presence of sugars, steroids, glycosides, alkaloids and tannins. LC-MS and GC-MS analysis identified components such as 2-amino-3-methyl-1-butanol, phenylethylamine, eriodictyol, daidzein and pomiferin, N-ethyl arachidonoyl amine, inosine diphosphate, trimipramine, granisetron, 3,4-dihydroxymandelic acid, ethyl ester, tri-TMS and dodecane, previously reported for their anti-depressant activity.

    CONCLUSIONS: The study thus demonstrated potential for use of the E. variegata bark ethanolic extract as an adjunct to currently available SSRI treatment. The study also identified components present in E. variegata bark ethanolic extract that may be responsible for its anti-depressant activity. Furthermore, the study thus confirms the traditional use of E. variegata barks in improving CNS function through its anti-depressant like activity.

    Matched MeSH terms: Tandem Mass Spectrometry
  2. Hempolchom C, Sookrung N, Srisuka W, Reamtong O, Sakolvaree Y, Chaicumpa W, et al.
    Parasitol Res, 2019 Aug;118(8):2353-2359.
    PMID: 31263951 DOI: 10.1007/s00436-019-06383-x
    Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.
    Matched MeSH terms: Tandem Mass Spectrometry
  3. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Tandem Mass Spectrometry
  4. Jamil NAM, Rashid NMN, Hamid MHA, Rahmad N, Al-Obaidi JR
    World J Microbiol Biotechnol, 2017 Dec 04;34(1):1.
    PMID: 29204733 DOI: 10.1007/s11274-017-2385-4
    Tiger's milk mushroom is known for its valuable medicinal properties, especially the tuber part. However, wild tuber is very hard to obtain as it grows underground. This study first aimed to cultivate tiger's milk mushroom tuber through a cultivation technique, and second to compare nutritional and mycochemical contents, antioxidant and cytotoxic activities and compound screening of the cultivated tuber with the wild tuber. Results showed an increase in carbohydrate content by 45.81% and protein content by 123.68% in the cultivated tuber while fat content reduced by 13.04%. Cultivated tuber also showed an increase of up to 64.21% for total flavonoid-like compounds and 62.51% of total β-D-glucan compared to the wild tuber. The antioxidant activity of cultivated tuber and wild tuber was 760 and 840 µg mL-1, respectively. The cytotoxic activity of boiled water extract of cultivated tuber against a human lung cancer cell line (A549) was 65.50 ± 2.12 µg mL-1 and against a human breast cancer cell line (MCF7) was 19.35 ± 0.11 µg mL-1. β-D-glucan extract from the purification of boiled water extract of cultivated tuber showed cytotoxic activity at 57.78 ± 2.29 µg mL-1 against A549 and 33.50 ± 1.41 µg mL-1 against MCF7. However, the β-glucan extract from wild tuber did not show a cytotoxic effect against either the A549 or MCF7 cell lines. Also, neither of the extracts from cultivated tuber and wild tuber showed an effect against a normal cell line (MRC5). Compound profiling through by liquid chromatography mass spectrometry (LC/MS) showed the appearance of new compounds in the cultivated tuber. In conclusion, our cultivated tuber of tiger's milk mushroom using a new recipe cultivation technique showed improved nutrient and bioactive compound contents, and antioxidant and cytotoxic activities compared to the wild tuber. Further investigations are required to obtain a better quality of cultivated tuber.
    Matched MeSH terms: Tandem Mass Spectrometry
  5. C SK, M S, K R
    Int J Biol Macromol, 2016 Nov;92:682-693.
    PMID: 27456125 DOI: 10.1016/j.ijbiomac.2016.07.062
    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities.
    Matched MeSH terms: Tandem Mass Spectrometry
  6. Lee HH, Lim CA, Cheong YT, Singh M, Gam LH
    Int J Biol Sci, 2012;8(3):353-62.
    PMID: 22393307 DOI: 10.7150/ijbs.3157
    Breast cancer is the most common cancer among women worldwide. Breast cancer metastasis primarily happens through lymphatic system, where the extent of lymph node metastasis is the major factor influencing staging, prognosis and therapeutic decision of the disease. We aimed to study the protein expression changes in different N (regional lymph nodes) stages of breast cancer. Protein expression profiles of breast cancerous and adjacent normal tissues were mapped by proteomics approach that comprises of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and tandem mass spectrometry (LC-MS/MS) analysis. Calreticulin and tropomyosin alpha 3 chains were the common up-regulated proteins in N0, N1 and N2 stages of breast cancer. Potential biomarker for each N stage was HSP 70 for N0, 80 k protein H precursor and PDI for N1 stage while 78 kDa glucose-regulated protein was found useful for N2 stage. In addition, significant up-regulation of PDI A3 was detected only in the metastasized breast cancer. The up-regulation expression of these proteins in cancerous tissues can potentially use as indicators for diagnosis, treatment and prognosis of different N stages of breast cancer.
    Matched MeSH terms: Tandem Mass Spectrometry
  7. Kwan SH, Abdul Aziz NHK, Ismail MN
    Protein Pept Lett, 2020;27(1):48-59.
    PMID: 31362651 DOI: 10.2174/0929866526666190730121711
    BACKGROUND: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

    OBJECTIVE: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

    MATERIAL AND METHODS: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

    RESULTS: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

    CONCLUSIONS: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

    Matched MeSH terms: Tandem Mass Spectrometry
  8. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Tandem Mass Spectrometry
  9. van Roekel EH, Trijsburg L, Assi N, Carayol M, Achaintre D, Murphy N, et al.
    Nutrients, 2018 May 22;10(5).
    PMID: 29789452 DOI: 10.3390/nu10050654
    Identifying the metabolites associated with alcohol consumption may provide insights into the metabolic pathways through which alcohol may affect human health. We studied associations of alcohol consumption with circulating concentrations of 123 metabolites among 2974 healthy participants from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Alcohol consumption at recruitment was self-reported through dietary questionnaires. Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQTM p180 kit). Data were randomly divided into discovery (2/3) and replication (1/3) sets. Multivariable linear regression models were used to evaluate confounder-adjusted associations of alcohol consumption with metabolite concentrations. Metabolites significantly related to alcohol intake in the discovery set (FDR q-value < 0.05) were further tested in the replication set (Bonferroni-corrected p-value < 0.05). Of the 72 metabolites significantly related to alcohol intake in the discovery set, 34 were also significant in the replication analysis, including three acylcarnitines, the amino acid citrulline, four lysophosphatidylcholines, 13 diacylphosphatidylcholines, seven acyl-alkylphosphatidylcholines, and six sphingomyelins. Our results confirmed earlier findings that alcohol consumption was associated with several lipid metabolites, and possibly also with specific acylcarnitines and amino acids. This provides further leads for future research studies aiming at elucidating the mechanisms underlying the effects of alcohol in relation to morbid conditions.
    Matched MeSH terms: Tandem Mass Spectrometry
  10. Chang HY, Hor SY, Lim KP, Zain RB, Cheong SC, Rahman MA, et al.
    Electrophoresis, 2013 Aug;34(15):2199-208.
    PMID: 23712713 DOI: 10.1002/elps.201300126
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.
    Matched MeSH terms: Tandem Mass Spectrometry
  11. Othman N, Mohamed Z, Yahya MM, Leow VM, Lim BH, Noordin R
    Exp Parasitol, 2013 Aug;134(4):504-10.
    PMID: 23680184 DOI: 10.1016/j.exppara.2013.05.001
    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band.
    Matched MeSH terms: Tandem Mass Spectrometry
  12. Huang D, Guo W, Gao J, Chen J, Olatunji JO
    Molecules, 2015;20(9):17405-28.
    PMID: 26393569 DOI: 10.3390/molecules200917405
    Clinacanthans nutans (Burm. f.) Lindau is a popular medicinal vegetable in Southern Asia, and its extracts have displayed significant anti-proliferative effects on cancer cells in vitro. However, the underlying mechanism for this effect has yet to be established. This study investigated the antitumor and immunomodulatory activity of C. nutans (Burm. f.) Lindau 30% ethanol extract (CN30) in vivo. CN30 was prepared and its main components were identified using high-performance liquid chromatography (HPLC) and mass spectrometry (LC/MS/MS). CN30 had a significant inhibitory effect on tumor volume and weight. Hematoxylin and eosin (H & E) staining and TUNEL assay revealed that hepatoma cells underwent significant apoptosis with CN30 treatment, while expression levels of proliferation markers PCNA and p-AKT were significantly decreased when treated with low or high doses of CN30 treatment. Western blot analysis of PAPR, caspase-3, BAX, and Bcl2 also showed that CN30 induced apoptosis in hepatoma cells. Furthermore, intracellular staining analysis showed that CN30 treatment increased the number of IFN-γ⁺ T cells and decreased the number of IL-4⁺ T cells. Serum IFN-γ and interleukin-2 levels also significantly improved. Our findings indicated that CN30 demonstrated antitumor properties by up-regulating the immune response, and warrants further evaluation as a potential therapeutic agent for the treatment and prevention of cancers.
    Matched MeSH terms: Tandem Mass Spectrometry
  13. Tan GM, Lim HJ, Yeow TC, Movahed E, Looi CY, Gupta R, et al.
    Proteomics, 2016 05;16(9):1347-60.
    PMID: 27134121 DOI: 10.1002/pmic.201500219
    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.
    Matched MeSH terms: Tandem Mass Spectrometry
  14. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Tandem Mass Spectrometry
  15. Loke MF, Chua EG, Gan HM, Thulasi K, Wanyiri JW, Thevambiga I, et al.
    PLoS One, 2018;13(12):e0208584.
    PMID: 30576312 DOI: 10.1371/journal.pone.0208584
    Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
    Matched MeSH terms: Tandem Mass Spectrometry
  16. Haque MA, Jantan I, Harikrishnan H, Ghazalee S
    Phytomedicine, 2019 Feb 15;54:195-205.
    PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183
    BACKGROUND: Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified.

    PURPOSE: The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level.

    RESULTS: The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation.

    CONCLUSION: The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.

    Matched MeSH terms: Tandem Mass Spectrometry
  17. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Tandem Mass Spectrometry
  18. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, et al.
    J Ethnopharmacol, 2020 Mar 01;249:112462.
    PMID: 31816368 DOI: 10.1016/j.jep.2019.112462
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids.

    AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia.

    MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample.

    RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p 

    Matched MeSH terms: Tandem Mass Spectrometry
  19. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Tandem Mass Spectrometry
  20. Liew YK, Awang Hamat R, van Belkum A, Chong PP, Neela V
    Clin Vaccine Immunol, 2015 May;22(5):593-603.
    PMID: 25809633 DOI: 10.1128/CVI.00493-14
    The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
    Matched MeSH terms: Tandem Mass Spectrometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links