Extracorporeal shockwave lithotripsy (ESWL) and ureteroscopy (URS) are two main methods of treating proximal ureteric stones. Success rates and cost-effectiveness of the two methods were compared. A total of 67 patients who underwent treatment between January 2007 and July 2007 at a state general hospital were included in the study. The success rate for ESWL group was 81.8% and for URS group was 84.6%. ESWL technique produced a significant higher overall cost per patient than URS (RM930.02 versus RM621.95 respectively). There was no significant difference in quality of patient's life. Cost-effectiveness ratio was lower for URS. The analysis suggested that URS was more cost-effective than ESWL.
This cadaveric study evaluates the margin of safety and technical efficacy of mini open carpal tunnel release performed using Knifelight (Stryker Instruments) through a transverse 1 cm wrist incision. A single investigator released 32 wrists in 17 cadavers. The wrists were then explored to assess the completeness of release and damage to vital structures including the superficial palmar arch, palmar cutaneous branch and recurrent branch of the median nerve. All the releases were complete and no injury to the median nerve and other structures were observed. The mean distance of the recurrent motor branch to the ligamentous divisions was 5.7 +/- 2.4 mm, superficial palmar arch was 8.7 +/- 3.1 mm and palmar cutaneous branch to the ligamentous division was 7.2 +/- 2.4 mm. The mean length of the transverse carpal ligament was 29.3 +/- 3.7 mm. Guyon's canal was preserved in all cases.
Lifestyle modification is effective in the prevention of cardiovascular diseases. This study aimed to promote healthy lifestyle behaviours to prevent cardiovascular disease. This study was a quasi-experimental trial with a follow up of two years. The intervention group (n = 102) received intensive individual and group counselling on diet and physical activity. The comparison group (n = 84) was given minimal education through mail and group counselling. Following the intervention, both groups reduced their total fat intake through a replacement in carbohydrate intake. The saturated fat and cholesterol intake was also reduced with a larger magnitude in the intervention group. Fruits and vegetables consumption was increased within the intervention group. The intervention group showed a statistically significant reduction in their mean total cholesterol levels with an intervention effect of -0.38 (95% C.I. = -0.63, -0.14) mmol/l. This study has achieved moderate improvement in dietary intakes as well as the total cholesterol of the participants.
Matched MeSH terms: Health Promotion/methods*; Occupational Health Services/methods*
The mu rhythm is an electroencephalogram (EEG) signal located at the central region of the brain that is frequently used for studies concerning motor activity. Quite often, the EEG data are contaminated with artifacts and the application of blind source separation (BSS) alone is insufficient to extract the mu rhythm component. We present a new two-stage approach to extract the mu rhythm component. The first stage uses second-order blind identification (SOBI) with stationary wavelet transform (SWT) to automatically remove the artifacts. In the second stage, SOBI is applied again to find the mu rhythm component. Our method is first compared with independent component analysis with discrete wavelet transform (ICA-DWT) as well as SOBI-DWT, ICA-SWT, and regression method for artifact removal using simulated EEG data. The results showed that the regression method is more effective in removing electrooculogram (EOG) artifacts, while SOBI-SWT is more effective in removing electromyogram (EMG) artifacts as compared to the other artifact removal methods. Then, all the methods are compared with the direct application of SOBI in extracting mu rhythm components on simulated and actual EEG data from ten subjects. The results showed that the proposed method of SOBI-SWT artifact removal enhances the extraction of the mu rhythm component.
To compare the measurements of the optic cup diameter with B-scan sonography with fundus photography in patients with clear ocular media and to propose a solution for the clinical problem of determining the cup-disc ratio in eyes with opaque ocular media.
The enzymatic reduction of Cr(VI) to Cr(III) by Cr(VI) resistant bacteria followed by chemical precipitation constitutes the ChromeBac system. Acinetobacter haemolyticus was immobilized onto carrier material inside a 0.2m(3) bioreactor. Neutralized electroplating wastewater with Cr(VI) concentration of 17-81 mg L(-1) was fed into the bioreactor (0.11-0.33 m(3)h(-1)). Complete Cr(VI) reduction to Cr(III) was obtained immediately after the start of bioreactor operation. Together with the flocculation, coagulation and filtration, outflow concentration of less than 0.02 mg Cr(VI)L(-1) and 1mg total CrL(-1) were always obtained. Performance of the bioreactor was not affected by fluctuations in pH (6.2-8.4), Cr(VI) (17-81 mg L(-1)), nutrient (liquid pineapple waste, 1-20%v/v) and temperature (30-38 degrees C). Standby periods of up to 10 days can be tolerated without loss in activity. A robust yet effective biotechnology to remove chromium from wastewater is thus demonstrated.
Matched MeSH terms: Waste Disposal, Fluid/methods*; Water Purification/methods*
In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.
The management of epistaxis remains to be a challenging problem for most ENT surgeon especially posterior epistaxis. Most cases are managed by placement of posterior nasal packs or balloons and failure leads to more invasive techniques, involving ligation of the internal maxillary artery. The above management is associated with significant patient complication and morbidity. Endoscopic ligation or cauterization of the sphenopalatine artery has emerged as a viable and minimally invasive alternative. We have performed endoscopic cauterization of nine sphenopalatine arteries in eight patients with no further episodes of epistaxis and complications, with an average follow-up of 25 months. The mean age of the patients was 52.75 years. Fifty percent of the patients had a history of hypertension.
The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.
Matched MeSH terms: Waste Disposal, Fluid/methods*; Water Purification/methods*
Controlled low-strength material (CLSM) is slurry made by mixing sand, cement, ash, and water. It is primarily used as a replacement for soil and structural fillings. This paper presents the findings of a preliminary investigation carried out on the performance of industrial waste incineration bottom ash as CLSM. CLSM mixes were designed using industrial waste incineration bottom ash, and cement. Tests for density, setting time, bleed, and compressive strength on cubes under various curing conditions, corrosivity, and leaching of heavy metals and salts were carried out on the CLSM mixtures, and the results discussed. Compressive strength for the designed CLSM mixtures ranged from 0.1 to 1.7 MPa. It is shown that the variations in curing conditions have less influence on the compressive strength of CLSM at high values of water to cement ratio (w/c), but low values of w/c influences the strength of CLSM. The CLSM produced does not exhibit corrosive characters as evidenced by pH. Leaching of heavy metals and salts is higher in bleed than in leachate collected from hardened CLSM. Cement reduces the leaching of Boron in bleed. It is concluded that there is good potential for the use of industrial waste incineration bottom ash in CLSM.
Matched MeSH terms: Conservation of Natural Resources/methods; Incineration/methods*
In obstetrics, fetal heart rate (FHR) detection remains the standard for intrapartum assessment of fetal well-being. In this paper, a low-power (< 55 mW) optical technique is proposed for transabdominal FHR detection using near-infrared photoplesthysmography (PPG). A beam of IR-LED (890 nm) propagates through to the maternal abdomen and fetal tissues, resulting in a mixed signal detected by a low-noise detector situated at a distance of 4 cm. Low-noise amplification and 24-bit analog-to-digital converter resolution ensure minimum effect of quantization noise. After synchronous detection, the mixed signal is processed by an adaptive filter to extract the fetal signal, whereas the PPG from the mother's index finger is the reference input. A total of 24 datasets were acquired from six subjects at 37 +/- 2 gestational weeks. Results show a correlation coefficient of 0.96 (p-value < 0.001) between the proposed optical and ultrasound FHR, with a maximum error of 4%. Assessment of the effect of probe position on detection accuracy indicates that the probe should be close to fetal tissues, but not necessarily restricted to head or buttocks.
Capillary zone electrophoresis methods for the simultaneous determination of the beta-blocker drugs, atenolol, chlorthalidone and amiloride, in pharmaceutical formulations have been developed. The influences of several factors (buffer pH, concentration, applied voltage, capillary temperature and injection time) were studied. Using phenobarbital as internal standard, the analytes were all separated in less than 4 min. The separation was carried out in normal polarity mode at 25 degrees C, 25 kV and using hydrodynamic injection (10 s). The separation was effected in an uncoated fused-silica capillary (75 mum i.d. x 52 cm) and a background electrolyte of 25 mm H(3)PO(4) adjusted with 1 m NaOH solution (pH 9.0) and detection at 198 nm. The method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 1-250 microg/mL for atenolol and chlorthalidone and from 2.5-250 microg/mL for amiloride. The relative standard deviations of intra- and inter-day migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of atenolol, chlorthalidone and amiloride in various pharmaceutical tablets formulations.
Vocal cord palsy secondary to recurrent laryngeal nerve injury may be attributable to trauma, infiltrating neoplasm, congenital cardiac anomaly and others. Regardless the causes, majority of unilateral adductor palsy cases are usually managed by speech rehabilitation in order to allow compensation. In selected cases, medialization procedure may be required to achieve a complete glottal closure during phonation. Multiple techniques have been developed to achieve this goal. This case report illustrates the recent advancement in vocal fold medialization procedure, which has not been widely practiced in Malaysia.
This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na(2)SO(4) (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na(2)SO(4) concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm(2) current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.
We present an efficient method for the fusion of medical captured images using different modalities that enhances the original images and combines the complementary information of the various modalities. The contourlet transform has mainly been employed as a fusion technique for images obtained from equal or different modalities. The limitation of directional information of dual-tree complex wavelet (DT-CWT) is rectified in dual-tree complex contourlet transform (DT-CCT) by incorporating directional filter banks (DFB) into the DT-CWT. The DT-CCT produces images with improved contours and textures, while the property of shift invariance is retained. To improve the fused image quality, we propose a new method for fusion rules based on principle component analysis (PCA) which depend on frequency component of DT-CCT coefficients (contourlet domain). For low frequency components, PCA method is adopted and for high frequency components, the salient features are picked up based on local energy. The final fusion image is obtained by directly applying inverse dual tree complex contourlet transform (IDT-CCT) to the fused low and high frequency components. The experimental results showed that the proposed method produces fixed image with extensive features on multimodality.
This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
A cross-sectional study was conducted at the main hospitals in Sana'a, Yemen to determine the attitude and practice of Yemen female doctors on mammography screening. Study subjects were all female doctors who were on duty during the questionnaire distribution. Those who agreed to participate were given the questionnaire to complete. Descriptive statistics were used to analyse socio-demographic variables and variables related to general health. Participants in this study were 105 female doctors with mean age of 32.1 years (SD = 7.17). Thirty-four respondents (36.6%) did not send asymptomatic women for mammography screening. The reasons were because of high cost (58.0%, n= 25), availability of other methods (23.3%, n= 10), instrument not available (11.6%, n= 5) and high risk of radiation (7.0%, n= 3). Twenty-five participants (26.9%) sent patients on regular basis if there was a family or personal history of breast cancer. Twenty-three participants (24.7%) sent the patients for mammogram screening every year regardless of the patients'history or symptoms. Although most doctors (36.5%) do not refer patients for mammography screening, seventy-seven (74.0%) indicated that they would refer patients for mammography screening on personal request by the patients. This study showed a low percentage of doctors who referred patients for routine mammography. The major reason given was the high cost of the procedure.
Matched MeSH terms: Mammography/methods; Mass Screening/methods*
Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.
A liquid-phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 microL) of isooctane as the acceptor phase was introduced continually to fill-up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 microL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 microL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 microg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*; Flow Injection Analysis/methods*