Gelatin is widely used in food and pharmaceutical products. However, the addition of gelatin especially in food products becomes a controversial issue among Muslims due to its animal origin. Thus, the present study was aimed to detect and differentiate the origin of gelatin added in processed foods using a combination method of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Principal Component Analysis (PCA). Porcine gelatin had exhibited 11 prominent polypeptides compared to bovine gelatin with 2 prominent polypeptides. Polypeptides of both gelatin sources at molecular weight ranged from 53 to 220 kDa can be used to differentiate between porcine and bovine gelatins using PCA. The efficiency in extracting gelatin from processed foods by different solutions was also evaluated. Extraction of gelatin in processed foods by cold acetone and deionised water had exhibited a similar polypeptide patterns, suggesting both solutions are suitable. The study indicated that approach of a simple gelatin extraction combined with SDS-PAGE and PCA, may provide robust information for gelatin species differentiation of processed foods.
The demand for novel antimicrobial agents from natural resources has been increased worldwide for food conservation purpose. In this study antimicrobial activity of musk lime, key lime and lemon were evaluated against various food borne pathogens and spoilage bacteria using disc diffusion test. Type of extraction solvent and concentration level significantly influenced the antibacterial activity of all the extracts. Ethanol extracts of musk lime, key lime and lemon exhibited significant broadest inhibitory activity at 100% concentration level (pure extract) compared to water and juice extracts. 100% ethanol extracts of musk lime (39.7 mm), key lime (26.7 mm) and lemon (32.0 mm) exhibited the largest diameter of inhibition zone (DIZ) against Aeromonas veronii. 100% water extracts of musk lime (25.3 mm), key lime juice extract (23.3 mm) and water extracts of lemon (23.7 mm) was most effective against food spoilage bacteria, A. veronii. The prominent results of the antimicrobial activity from lime, key lime and lemon extracts may attribute them as potential natural food preservatives and could be used in pharmaceuticals field.
Aquaculture businesses in Malaysia require careful and comprehensive financial analysis to be successful. Comprehensive financial analysis has three key components, namely financial position, profitability and liquidity/cash flow. This research focuses on using pro forma income statements to analyze financial positions and to evaluate the effect of government incentives on sustainability of Malaysian aquaculture farms. This paper is divided into two sections; the first section discusses and provides the finding and comparability of the financial analysis on freshwater and brackish water producers. In the first section, the discussion was based on financial viability criteria, namely net present value (NPV), internal rate of return (IRR) and benefit cost ratio (BCR)) for base study. The evaluation process was carried out using four different phases; base study and government incentives simulations, Pioneer Status (PS), Investment Tax Allowance (ITA), and Accelerated Capital Allowance (ACA) for effectiveness of government incentives and roles in increase of profitability and production. The results showed that in all brackish water farms, NPV after the ACA incentive showed a higher and positive value comparable to individual PS and ITA. The effect of Government Incentive on Penaeus vannamei and Grouper showed that IRR and NPV on ACA (based on PS) is 2% and 9%, respectively higher than ACA (based on ITA). Meanwhile, in Barramundi farming ACA (based on ITA) was 8% higher than ACA (based on PS). The results on freshwater showed that ACA (based on ITA) on Tilapia and Catfish was 8% and 6% higher than ACA (based on PS). This paper concludes that the aquaculture operators should choose to accept PS with ACA on Penaeus vannamei and Grouper and choose ACA based on ITA on Barramundi, Tilapia and Catfish in order to maximize private profitability.
Honey is usually subjected to filtration and heating for bottling before commercialization. However, there is no standard procedure available for thermal treatment on honey. Honey is thermally heated at various temperature and duration based on individual experience to prolong the shelf life of honey in the market. The heating methods might decrease the biochemical components such as nutrients, enzymatic activities and vitamins to certain extent. In addition to water reduction, thermal treatment on sugar rich honey usually accompanied by the formation of 5-hydroxymethylfurfural (HMF). In the present study, the biochemical components in three commonly consumed honey in Malaysia, namely tualang, gelam and acacia honey were investigated before and after thermal treatment at 90oC for 30 min. The short period of heating time was found to degrade nutrients, enzymatic activities and water soluble vitamins in honey. The degradation of protein and enzyme via proteolytic digestion had attributed to the increase of free amino acids in honey. Based on the multivariate analysis, the most thermally affected biochemical components are crude fat, panthotenic acid (Vitamin B5) and diastase activity which explain for 86.4% of the total variance. The kinetic studies on the HMF formation revealed that the honey samples followed zero order kinetic model for the first 60 min of heating at 90oC. The findings indicate that the temperature and duration of heating during honey processing is essential to be investigated according to the honey origin. The initial biochemical composition of honey would affect the kinetic profile of HMF formation.
Proximate composition, pH and amylose content of ripe Cavendish banana flour (RBF) prepared in this study were compared with all-purpose wheat flour (WF). RBF was found to be significantly (P < 0.05) higher in total carbohydrates and minerals content, while significantly (P < 0.05) lower in protein and fat contents compared with those of WF. Wheat-ripe banana composite flours (W-RBF) prepared by partial substitution of WF with RBF were assessed for swelling power, solubility, pasting properties and gel textural properties. Granular swelling of RBF occurred at a higher temperature compared to that of WF, suggesting that more energy and water were required to cook WF-RBF as the presence of soluble carbohydrates would compete for water and this would eventually delay starch hydration and granular expansion during cooking. Higher substitution with RBF led to higher soluble carbohydrates content, and increase in solubility index of WF-RBF. Partial substitution with RBF also resulted in significant (P < 0.05) decrease in pasting properties. A higher substitution of WF with RBF could reduce starch gelatinisation during cooking and retrogradation owing to the reduction of available starch in WF-RBF. All WF-RBF gels were significantly (P < 0.05) firmer and less sticky compared to WF gels.
This study was conducted on selected local herbs such as ulam raja (Cosmos caudatus), kesum (Polygonum minus), selom (Oenanthe javanica), pegaga (Centella asiatica) and curry leaves (Murraya koenigii) to investigate their antioxidative activities. The water extracts of the herbs were analysed for total phenolic content, reducing antioxidant power, ferric thiocyanate (FTC) and the thiobarbituric acid (TBA) test was also accried out. Polygonum minus showed the highest total phenolic content and reducing power among the herbs. Increasing the concentration of the extracts resulted in increased Fe3+ reducing antioxidant power for all the herbs. FTC and TBA tests on the extracts during seven days of storage showed that all the herbs extracts had the ability to reduce oxidation compared to the control (P < 0.05). From the FTC analysis, Murraya koenigii leaves was best in reducing the oxidation rate (67.67%) compared to the other herbs studied. Analysis of TBA showed that Centella asiatica extract had the highest antioxidant effect. However, both TBA and FTC analysis for these two herbs showed no significant difference (P >0.05) from Polygonum minus and butylated hydroxyanisole (BHT) a synthetic antioxidant. Correlation analysis showed positive correlations between amount of total phenolic content and reducing power (r = 0.75) and antioxidative activities (r = 0.58) in linoleic acid emulsion system. This shows that antioxidative activities of these Malaysian herbal plants especially Polygonum minus may be a potential source of natural antioxidants with similar characteristics to the synthetic antioxidant, BHT.
All living organisms including human beings in this biosphere are constantly exposed to a variety of xenobiotics. The enormous chemical load in the environment has been primarily through the modernization, industrialization and changes in lifestyle. The changing food habits to suit modern living pose a serious threat to a healthy life. Among others, consumption of soft drinks invariably forms a part of modern life. Mostly children and adolescents are the target groups vulnerable to frequent consumption, compromising the nutritious foods such as fruits, vegetables, milk and milk products. Logically, the quality of the soft drinks is determined by the type and quantity of chemicals present, including those present inherently in the water used for such preparations. The impact of soft drinks on human health has been a subject of in depth research. Consumption of soft drinks plays a major role in a variety of diseases like obesity, diabetes, dental and bone disorders and others, more so among children and adolescents. The toxic effects of soft drinks have gained much attention, due to the frequent scientific reports and media attention. The objective of this review is to provide a comprehensive scrutiny of the impact of soft drinks on health, as well as to suggest alternatives for a healthy life style.
The physicochemical properties of silver catfish frame hydrolysate powder at three different degree of hydrolysis, DH43%, DH 55% and DH 68% were studied. The hydrolysates powder were obtained by hydrolysis using Alcalase®, centrifugation and spray drying of the supernatant. The study found that preparation of these hydrolysates affected the protein, ash and fat content as well as amino acid composition. As for essential amino acids, their values were generally considered as adequate as compared to the suggested essential amino acids profile of FAO/WHO. The results showed that SFHs were rich in lysine and glutamate. Hydrolysate at DH 68% exhibited better peptide solubility and water holding capacity. As degree of hydrolysis increased, emulsifying capacity and foaming capacity of the hydrolysate decreased. It was also found that the lightness in hydrolysate powder decreased with increase in degree of hydrolysis. This study shows that silver catfish frame hydrolysate has good solubility, good foaming properties and light colour profile, thus having high potential as food ingredient.
Rambutan (Nephelium lappaceum) peel is a potential source of antioxidant. As rambutan is a seasonal fruit, a proper heat treatment prior to storage is necessary. Thus, this study was conducted to determine the effect of water and steam blanchings on browning enzymes and antioxidant activities of rambutan peel extracts. Rambutan from the variety of ‘Anak Sekolah’ were peeled and the peel was blanched in boiling water for 0, 2.5, 5 min and by autoclaving for 0, 5, 10 and 15 min. The residual peroxidase (POD) and polyphenoloxidase (PPO) activities, antioxidant activity (2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity), total polyphenol content (TPC) and peel extract colour were determined. The results showed that both water and steam blanchings significantly reduced (p < 0.05) POD and PPO activities. The results also indicated that the increase in the blanching period did not significantly reduce the enzyme activities further. In terms of antioxidant activity, the thermal pretreatment caused no significant difference in the contents of phenolic compounds, as well as the antioxidant capacity of the final product.
The extraction method for the determination of ochratoxin A (OTA) in black pepper was optimized. The influence of three variables, i.e., type of solvent, solvent-volume-to-sample- size ratio (v/w) and amount of sodium chloride (NaCl) (g), on OTA recovery was evaluated. Analysis of variance was used to compare recovery values obtained from different solvents, and response surface methodology (RSM) was used to determine the optimum amount of NaCl and the solvent-volume-to-sample-size ratio. The concentration of OTA was determined by high-performance liquid chromatography with fluorescence detection. The highest recovery (95.2 %) was obtained when methanol/water (80:20, v/v) was used as the solvent. The RSM results showed that the experimental data could be adequately fitted to a second-order polynomial model with multiple regression coefficients (R2) of 0.962. The optimum amount of NaCl was determined to be 3 g, whereas the optimum solvent-volume-to-sample-size ratio (v/w) was found to be 4. The proposed method was applied to 20 samples, and the presence of OTA was found in 8 (40%) samples ranging from 0.11 to 3.16 ng g-1.
This study investigates effects from different drying methods (vacuum oven dried vs. freeze dried) on the rheological, functional and structural properties of chicken skin gelatin compared to bovine gelatin. Vacuum oven dried chicken skin samples showed a higher gelatin yield (12.86%) than freeze-dried samples (9.25%). The latter showed a higher melting temperature (32.64oC) and superior foaming capacity (176%) as well as foaming stability (166.67%). Vacuum oven dried samples demonstrated greater fat binding capacity (5.5 ml/g) and emulsion stability (55.79%). There were no significant differences (p >0.05) in emulsion and water holding capacity for three gelatins. Bovine gelatin did hold the lowest of all functional properties studied. A Fourier Transform Infrared (FTIR) spectrum analysis of chicken skin gelatin under both drying methods presented structures similar to those of bovine gelatin. Collectively, this findings indicated no significant differences (p >0.05) in rheological, functional and structural properties for chicken skin gelatins prepared by either drying method. Hence, to save costs and maintain gelatin quality, vacuum oven drying offers potential as an alternative means of production.
This study was conducted to investigate the effect of dietary glutamine (Gln) + glutamic acid (Glu) supplementation on growth performance and physiological stress response in broiler chickens subjected to 24 h delay in placement. Equal number of day-old broiler chicks were assigned to either immediate placement or with 24 h delay in placement with no access to feed and water. Chicks from each placement group were fed either standard starter diet (control) or standard starter diet +1% AminoGut (AG; mixture of 10% Gln and 10% Glu) from 1 to 21 d. Blood and duodenal samples were collected at 21 d for analysis of serum levels of ceruloplasmin (CER), ovotransferin (OVT) and α-1 acid glycoprotein (AGP), duodenal heat shock protein (HSP) 70 expression, and villi length and crypt depth. Results showed that delayed placement for 24 h was detrimental to weight gain during the starter phase (1 to 21 d) but not thereafter. AG supplementation was not able to eliminate that reduction in weight gain and feed intake during the starter stage. However, the observed enhancement in villi length and crypt depth at d 21 resulted in improvement of FCR and weight gain during the finisher stage (22 to 42 d) and consequently the overall period (1 to 42 d). Broiler chickens supplemented with AG also showed lower mortality rate, and higher AGP, OVT, CER, and HSP 70 expression compared to their control counterparts. Based on AGP, OVT, CER, and HSP 70 expression, there is no indication that delayed placement was physiologically stressful to the broiler chickens at 21 d of age.
A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor's materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents.
Introduction: There has been increasing evidence of detrimental effects of cumulative positive fluid
balance in critically ill patients. The postulated mechanism of harm is the development of interstitial
oedema, with resultant increase morbidity and mortality. We aim to assess the impact of positive fluid
balance within the first 48 hours on mortality in our local ICU population. Methods: This was a secondary
analysis of a single centre, prospective observational study. All ICU patients more than 18 years were
screened for inclusion in the study. Admission of less than 48 hours, post-elective surgery and ICU
readmission were excluded. Cumulative fluid balance either as volume or percentage of body weight from
admission was calculated over 6, 24 and 48 hour period from ICU admission. Results: A total of 143 patients
were recruited, of these 33 died. There were higher cumulative fluid balances at 6, 24 and 48 hours in nonsurvivors
compared to survivors. However, after adjusted for severity of illness, APACHE II Score, they were
not predictive of mortality. Sensitivity analysis on sub-cohort of patients with acute kidney injury (AKI)
showed only an actual 48-hour cumulative fluid balance was independently predictive of mortality (1.21
(1.03 to 1.42)). Conclusions: Cumulative fluid balance was not independently predictive of mortality in a
heterogenous group of critically ill patients. However, in subcohort of patients with AKI, a 48-hour
cumulative fluid balance was independently predictive of mortality. An additional tile is thus added to the
mosaic of findings on the impact of fluid balance in a hetergenous group of critically ill patients, and in subcohort
of AKI patients.
Seaweeds survive in marine waters with high sulfate concentration compared to those living at freshwater habitats. The cell wall polymer of Gracilaria spp. which supplies more than 50% of the world agar is heavily sulfated. Since sulfation reduces the agar quality, it is interesting to investigate the effects of sulfate deprivation on the sulfate contents of seaweed and agar, as well as the metabolic pathways of these seaweeds. In this study, two agarophytes G. changii and G. salicornia were treated under sulfate deprivation for 5 days. The sulfate contents in the seaweed/agar were generally lower in sulfate-deprivated samples compared to those in the controls, but the differences were only statistically significant for seaweed sample of G. changii and agar sample of G. salicornia. RNA sequencing (RNA-Seq) of sulfate-deprivated and untreated seaweed samples revealed 1,292 and 3,439 differentially expressed genes (DEGs; ≥1.5-fold) in sulfate-deprivated G. changii and G. salicornia, respectively, compared to their respective controls. Among the annotated DEGs were genes involved in putative agar biosynthesis, sulfur metabolism, metabolism of sulfur-containing amino acids, carbon metabolism and oxidative stress. These findings shed light on the sulfate deprivation responses in agarophytes and help to identify candidate genes involved in agar biosynthesis.
This article reports on the structural characteristics and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) extracted from oil palm fronds (OPF) and modified autohydrolyzed ethanol organosolv lignin via incorporation of p-nitrophenol (AHNP EOL). The isolated lignin were analyzed by FTIR, (1)H and (13)C NMR spectroscopy, 2D NMR; HSQC and HMBC, CHN analysis, molecular weight distribution using GPC analyzer, thermal analysis; TGA and DSC. The chemical modification by utilizing an organic scavenger during delignification process provided smaller lignin fragments and enhanced the solubility of lignin by reducing its hydrophobicity properties. It was revealed that the antioxidant properties increased as compared to the unmodified organosolv lignin. Additionally, the modified lignin has better solubility in water (DAHNP EOL=35%>DAH EOL=25%).
Tooth wear is the loss of tooth tissue and structures not due to caries. It can occur in various forms either attrition, abrasion, erosion, noncaries cervical lesion (NCCL) or a combination of two or more forms. The objective of this study was to determine the patterns and associated aetiologies of tooth wear among adults in Kelantan, Malaysia. This crosssectional study involved 81 adults with tooth wear which was visually assessed using the Smith and Knight Tooth Wear Index (TWI). A questionnaire was used to seek putative aetiologies of the wear. Data were analyzed and the results were expressed as frequencies and percentages. Six thousand three hundred and eighty four tooth surfaces were examined in 1596 teeth. 17.4% surfaces had tooth wear; 80% scored 1, 18% scored 2 and 2% scored 3. Among the 81 cases of tooth wear, 29 (35.8%) had abrasion; 25 (30.9%) had attrition; 1(1.2%) had erosion while 26 (32.1%) had the combined type. Among those with abrasion, majority had the habit of eating freshwater clams (Corbicula fluminea) as local delicacy where most of the times people use their teeth to pry open the clam shells. Erosion was related to the pooling of carbonated drinks or beverages in the mouth before swallowing. In conclusion, most adults experienced abrasion and the most common possible associated aetiology is the way of eating clams.
exhibits extensive first pass metabolism with poor oral bioavailability (27%–50%) limiting its therapeutic efficiency. The present study involved an attempt to enhance its aqueous solubility by formulating as solid dispersions (SDs) using sodium starch glycollate (SSG) as a carrier. The dispersions were formulated by dispersion method and evaluated by phase solubility, drug content, in vitro release and mathematical modelling. Solid state characterisation of samples was carried out by X-ray diffraction (XRD), differential scanning calorimetric (DSC), Fourier transform infrared spectrophotometry (FTIR), near infrared (NIR), Raman analysis and wettability studies. The phase solubility and thermodynamic parameters indicated the spontaneity and solubilisation effect of carrier. The release rate from the dispersions was higher than pure drug and found to increase with an increase in carrier content. The optimised dispersions were selected based on release studies, profiles and dissolution parameters. XRD, DSC, FTIR, NIR and Raman analysis proved the crystallinity reduction, changes in crystal quality and compatibility between drug and carriers. Wettability studies proved the increased wettability in selected dispersions. Based on the findings, possible mechanisms that would have contributed to dissolution enhancement of CLZ were suggested. Such findings could be extrapolated to enhance the aqueous solubility of other poorly water-soluble drugs.
Systems perspectives are fundamental in driving technological improvements and yield-enhancing strategies that improve agricultural productivity. These can resolve farmerʼs problems and are important pathways for sustaining food and nutritional security for human welfare in Asia. The essential determinants of this objective are the capacity to efficiently manage the natural resource base (land, crops, animals, and water) to resolve constraints to farming systems, and notably the integration of multiple research and development (R&D) issues through all levels of formal and non-formal learning systems. Both formal and informal education systems are important, with the former relating more to universities and colleges, and the latter to the intermediate level. Graduates from this level have the primary responsibility of introducing improved technologies and change to farmers, mainly along production and disciplinary pathways.The traditional research–extension–farmer model for technology delivery is no longer acceptable, due to “top down” extension functions and prescriptions, ineffectiveness to cope with the dynamics of production systems, complex interactions within the natural resources, effects of climate change and globalisation. There are also reservations on the technical capacity and skills of extension agents, constraints identification, methods for technology diffusion and dissemination, and innovative use of beneficial technological improvements that can directly respond to the needs of small farmers, and impact on subsistence agriculture. Agricultural education and systems perspectives are therefore an overriding compelling necessity which transcends prevailing limitations to waning agriculture and rural growth. Their wider recognition and applications provides an important means to maximise efficiency in the potential use; of the natural resources, increase engagement and investments in agriculture, promote ways to become more self-reliant in the development of crucial new technologies and intensification. These together can meet the challenges of the future and overcome the legacy of continuing poverty, food and nutritional insecurity. Asian farming systems, with their diversity of crops and animals, traditional methods, multiple crop-animal interactions, numerous problems of farmers present increasingly complex issues of natural resource management (NRM) and the environment. Many if not all of these can only be resolved by interdisciplinary R&D, which overcomes a major weakness of many R&D programmes presently and in the past. Improved education and training is a powerful and important driver of community-based participation aimed at enhancing sustainable food security, poverty reduction and social equity in which the empowerment of women in activities that support organising themselves is also an important pathway to enhance self-reliance and their contribution to agriculture. A vision for the future in which improved agricultural education in a systems context can provide the pathway to directly benefit the revitalisation of agriculture and agricultural development is proposed with a three-pronged strategy as follows:
Define policy for the development of appropriate curricular for formal agricultural education that provides strong multi-disciplinary orientation and improved understanding of the natural resources (land, crops, animals and water) and their interactions
Organise formal degree education and specialisation at the university level that reflects strong training in understanding of agricultural systems; systems perspectives, methodologies and their application, and
Define non-formal education and training needs that can be intensified at different levels, including the trainin of trainers as agents of change.