Displaying publications 321 - 340 of 1782 in total

Abstract:
Sort:
  1. Ling CS, Yin KB, Cun ST, Ling FL
    Mol Med Rep, 2015 Jan;11(1):611-8.
    PMID: 25333818 DOI: 10.3892/mmr.2014.2707
    The function of choline kinase (CK) and ethanolamine kinase (EK) is to catalyse the phosphorylation of choline and ethanolamine, respectively, in order to yield phosphocholine (PCho) and phosphoethanolamine (PEtn). A high expression level of PCho, due to elevated CK activity, has previously been associated with malignant transformation. In the present study, a quantitative polymerase chain reaction was performed to determine the mRNA expression profiles of ck and ek mRNA variants in MCF7 breast, HCT116 colon and HepG2 liver cancer cells. The ck and ek mRNA expression profiles showed that total ckα was expressed most abundantly in the HepG2 cells. The HCT116 cells exhibited the highest ckβ and ek1 mRNA expression levels, whereas the highest ek2α mRNA expression levels were detected in the MCF7 cells. The ckβ variant had higher mRNA expression levels, as compared with total ckα, in both the MCF7 and HCT116 cells. Relatively low ek1 mRNA expression levels were detected, as compared with ek2α in the MCF7 cells; however, this was not observed in the HCT116 and HepG2 cells. Notably, the mRNA expression levels of ckα2 were markedly low, as compared with ckα1, in all three cancer cell lines. The effects of epigenetic modification on ck and ek mRNA expression, by treatment of the cells with the histone deacetylase inhibitor trichostatin A (TSA), were also investigated. The results of the present study showed that the mRNA expression levels of ckα, ckβ and ek2α were affected by TSA. An increase >8-fold was observed in ek2α mRNA expression upon treatment with TSA, in a concentration- and time-dependent manner. In conclusion, the levels of ck and ek transcript variants in the three cancer cell lines were varied. The effects of TSA treatment on the mRNA expression levels of ck and ek imply that ck and ek mRNA expression may be regulated by epigenetic modification.
    Matched MeSH terms: Cell Line, Tumor
  2. Ooi TC, Mohammad NH, Sharif R
    Biol Trace Elem Res, 2014 Dec;162(1-3):8-17.
    PMID: 25326781 DOI: 10.1007/s12011-014-0153-y
    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p 
    Matched MeSH terms: Cell Line
  3. Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, et al.
    Int J Nanomedicine, 2015;10:1649-66.
    PMID: 25767386 DOI: 10.2147/IJN.S67113
    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
    Matched MeSH terms: Cell Line, Tumor
  4. Almansour AI, Kumar RS, Beevi F, Shirazi AN, Osman H, Ismail R, et al.
    Molecules, 2014 Jul 10;19(7):10033-55.
    PMID: 25014532 DOI: 10.3390/molecules190710033
    A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 2a-n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3) with N-methylglycine (sarcosine), phenylglycine, or proline. All compounds (50 μM) were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231), leukemia lymphoblastic (CCRF-CEM), and ovarian carcinoma (SK-OV-3) cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a-n) showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a-n, a number of derivatives including 6a-c and 6i-m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.
    Matched MeSH terms: Cell Line, Tumor
  5. Amjad MW, Mohd Amin MC, Mahali SM, Katas H, Ismail I, Hassan MN, et al.
    PLoS One, 2014;9(8):e105234.
    PMID: 25133390 DOI: 10.1371/journal.pone.0105234
    Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100-150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.
    Matched MeSH terms: Cell Line, Tumor
  6. Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, et al.
    Int J Med Sci, 2014;11(11):1201-7.
    PMID: 25249788 DOI: 10.7150/ijms.8356
    On in vitro expansion for therapeutic purposes, the regenerative potentials of mesenchymal stem cells (MSCs) decline and rapidly enter pre-mature senescence probably involving oxidative stress. To develop strategies to prevent or slow down the decline of regenerative potentials in MSC culture, it is important to first address damages caused by oxidative stress-induced premature senescence (OSIPS). However, most existing OSIPS study models involve either long-term culture to achieve growth arrest or immediate growth arrest post oxidative agent treatment and are unsuitable for post-induction studies.
    Matched MeSH terms: Cell Line
  7. Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, et al.
    Nucleic Acids Res, 2014 Aug;42(14):9424-35.
    PMID: 25056318 DOI: 10.1093/nar/gku656
    We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3' and/or 5' end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5' differences and in support of this we report that a 5' isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5' isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes.
    Matched MeSH terms: Cell Line
  8. Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:253-63.
    PMID: 25175212 DOI: 10.1016/j.msec.2014.07.028
    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents.
    Matched MeSH terms: Cell Line
  9. Yen HK, Fauzi AR, Din LB, McKelvey-Martin VJ, Meng CK, Inayat-Hussain SH, et al.
    PMID: 25107315 DOI: 10.1186/1472-6882-14-295
    Selective Alzheimer Disease Indicator-1 (or Seladin-1) is a multifunctional protein first discovered by downregulation of its expression in Alzheimer's disease. Interestingly, the expression of this protein is upregulated in several cancers, including primary bladder cancer. However, its role in cancer formation has yet to be discovered. Goniothalamin is a natural product that has been demonstrated to induce apoptosis in various cancer cell lines. In this study, we have elucidated the role of Seladin-1 in goniothalamin-induced cytotoxicity towards human urinary bladder cancer cell line RT4.
    Matched MeSH terms: Cell Line, Tumor
  10. Said NA, Gould CM, Lackovic K, Simpson KJ, Williams ED
    Assay Drug Dev Technol, 2014 Sep;12(7):385-94.
    PMID: 25181411 DOI: 10.1089/adt.2014.593
    Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive "mesenchymal" cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
    Matched MeSH terms: Cell Line, Tumor
  11. Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, et al.
    PLoS One, 2014;9(6):e100547.
    PMID: 24945301 DOI: 10.1371/journal.pone.0100547
    High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments.
    Matched MeSH terms: Cell Line, Tumor
  12. Lim SH, Wu L, Kiew LV, Chung LY, Burgess K, Lee HB
    PLoS One, 2014;9(3):e82934.
    PMID: 24622277 DOI: 10.1371/journal.pone.0082934
    Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM), inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM) and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6) exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.
    Matched MeSH terms: Cell Line, Tumor
  13. Dorniani D, Kura AU, Hussein-Al-Ali SH, bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:972501.
    PMID: 24895684 DOI: 10.1155/2014/972501
    The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.
    Matched MeSH terms: Cell Line, Tumor
  14. Chin Y, Lim SH, Zorlu Y, Ahsen V, Kiew LV, Chung LY, et al.
    PLoS One, 2014;9(5):e97894.
    PMID: 24840576 DOI: 10.1371/journal.pone.0097894
    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1-3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1-3 exhibited 10-100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8-3.2 µM and 0.04-0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able to improve the photodynamic properties of ZnPc.
    Matched MeSH terms: Cell Line, Tumor
  15. Halabi MF, Sheikh BY
    Biomed Res Int, 2014;2014:906239.
    PMID: 24791006 DOI: 10.1155/2014/906239
    The antiproliferative and antioxidant potential of Cymbopogon citratus (Lemon grass) extracts were investigated. The extracts were isolated by solvent maceration method and thereafter subjected to antiproliferative activity test on five different cancer cells: human colon carcinoma (HCT-116), breast carcinoma (MCF-7 and MDA-MB 231), ovarian carcinoma (SKOV-3 and COAV), and a normal liver cell line (WRL 68). The cell viability was determined using MTT assay. The DPPH radical scavenging assay revealed a concentration dependent trend. A maximum percentage inhibition of 45% and an IC50 of 278  μg/mL were observed when aqueous extract was evaluated. In contrast, 48.3% and IC50 of 258.9  μg/mL were observed when 50% ethanolic extract was evaluated. Both extracts at concentration of 50 to 800  μg/mL showed appreciative metal chelating activity with IC50 value of 172.2 ± 31  μg/mL to 456.5 ± 30  μg/mL. Depending on extraction solvent content, extract obtained from 50% ethanolic solvent proved to be more potent on breast cancer MCF-7 cell line (IC50 = 68  μg/mL). On the other hand, 90% ethanolic extract showed a moderate potency on the ovarian cancer (COAV) and MCF-7 cells having an IC50 of 104.6  μg/mL each. These results suggested antiproliferative efficacy of C. citratus ethanolic extract against human cancer cell lines.
    Matched MeSH terms: Cell Line, Tumor
  16. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, et al.
    Eur J Med Chem, 2014 Apr 9;76:397-407.
    PMID: 24602785 DOI: 10.1016/j.ejmech.2014.02.049
    Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC₅₀ value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
    Matched MeSH terms: Cell Line, Tumor
  17. Cheah YK, Cheng RW, Yeap SK, Khoo CH, See HS
    Genet. Mol. Res., 2014;13(1):1679-83.
    PMID: 24535903 DOI: 10.4238/2014.January.22.4
    The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.
    Matched MeSH terms: Cell Line, Tumor
  18. Lai PL, Naidu M, Sabaratnam V, Wong KH, David RP, Kuppusamy UR, et al.
    Int J Med Mushrooms, 2013;15(6):539-54.
    PMID: 24266378
    Neurotrophic factors are important in promoting the growth and differentiation of neurons. Nerve growth factor (NGF) is essential for the maintenance of the basal forebrain cholinergic system. Hericenones and erinacines isolated from the medicinal mushroom Hericium erinaceus can induce NGF synthesis in nerve cells. In this study, we evaluated the synergistic interaction between H. erinaceus aqueous extract and exogenous NGF on the neurite outgrowth stimulation of neuroblastoma-glioma cell NG108-15. The neuroprotective effect of the mushroom extract toward oxidative stress was also studied. Aqueous extract of H. erinaceus was shown to be non-cytotoxic to human lung fibroblast MRC-5 and NG108-15 cells. The combination of 10 ng/mL NGF with 1 μg/mL mushroom extract yielded the highest percentage increase of 60.6% neurite outgrowth. The extract contained neuroactive compounds that induced the secretion of extracellular NGF in NG108-15 cells, thereby promoting neurite outgrowth activity. However, the H. erinaceus extract failed to protect NG108-15 cells subjected to oxidative stress when applied in pre-treatment and co-treatment modes. In conclusion, the aqueous extract of H. erinaceus contained neuroactive compounds which induced NGF-synthesis and promoted neurite outgrowth in NG108-15 cells. The extract also enhanced the neurite outgrowth stimulation activity of NGF when applied in combination. The aqueous preparation of H. erinaceus had neurotrophic but not neuroprotective activities.
    Matched MeSH terms: Cell Line, Tumor
  19. Ahmad Aufa Z, Hassan FA, Ismail A, Mohd Yusof BN, Hamid M
    J Agric Food Chem, 2014 Mar 5;62(9):2077-84.
    PMID: 24499380 DOI: 10.1021/jf403481p
    Underutilized vegetables are currently studied not only for their nutrient values but also for their health-promoting components for protection against chronic diseases. The present study was performed to evaluate chemical compositions and antioxidant properties of underutilized vegetable palm hearts, namely, lalis (Plectocomiopsis geminiflora) and pantu (Eugeissona insignis). Additionally, the vegetable extracts were evaluated for their activities in the inhibition of digestive enzymes and effects on insulin secretion using BRIN BD11 pancreatic cell lines. Both vegetables contain valuable sources of dietary fiber, potassium, and zinc. For the first time, the phenolic compounds of the vegetables were identified and quantified using HPLC-DAD and LC-ESI-MS. Appreciable amounts of chlorogenic acid were found in the studied vegetables. The sample extracts exhibited potential antioxidant capacities through chemical and biological in vitro assays. High inhibition of α-amylase activity (>50%) was found from the extracts. Thus, it was suggested the vegetable consumption could fulfill the nutrient requirements among local communities.
    Matched MeSH terms: Cell Line
  20. Naghibi F, Esmaeili S, Abdullah NR, Nateghpour M, Taghvai M, Kamkar S, et al.
    Biomed Res Int, 2013;2013:316185.
    PMID: 24455686 DOI: 10.1155/2013/316185
    Based on the collected ethnobotanical data from the Traditional Medicine and Materia Medica Research Center (TMRC), Iran, Myrtus communis L. (myrtle) was selected for the assessment of in vitro and in vivo antimalarial and cytotoxic activities. Methanolic extract of myrtle was prepared from the aerial parts and assessed for antiplasmodial activity, using the parasite lactate dehydrogenase (pLDH) assay against chloroquine-resistant (K1) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum. The 4-day suppressive test was employed to determine the parasitemia suppression of the myrtle extract against P. berghei in vivo. The IC50 values of myrtle extract were 35.44 µg/ml against K1 and 0.87 µg/ml against 3D7. Myrtle extract showed a significant suppression of parasitaemia (84.8 ± 1.1% at 10 mg/kg/day) in mice infected with P. berghei after 4 days of treatment. Cytotoxic activity was carried out against mammalian cell lines using methyl thiazol tetrazolium (MTT) assay. No cytotoxic effect on mammalian cell lines up to 100 µg/mL was shown. The results support the traditional use of myrtle in malaria. Phytochemical investigation and understanding the mechanism of action would be in our upcoming project.
    Matched MeSH terms: Cell Line
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links